ترغب بنشر مسار تعليمي؟ اضغط هنا

Unquantized thermal Hall effect in quantum spin liquids with spinon Fermi surfaces

98   0   0.0 ( 0 )
 نشر من قبل Rhine Samajdar
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Recent theoretical studies have found quantum spin liquid states with spinon Fermi surfaces upon the application of a magnetic field on a gapped state with topological order. We investigate the thermal Hall conductivity across this transition, describing how the quantized thermal Hall conductivity of the gapped state changes to an unquantized thermal Hall conductivity in the gapless spinon Fermi surface state. We consider two cases, both of potential experimental interest: the state with non-Abelian Ising topological order on the honeycomb lattice, and the state with Abelian chiral spin liquid topological order on the triangular lattice.



قيم البحث

اقرأ أيضاً

Motivated by recent transport measurements in high-$T_c$ cuprate superconductors in a magnetic field, we study the thermal Hall conductivity in materials with topological order, focusing on the contribution from neutral spinons. Specifically, differe nt Schwinger boson mean-field ans{a}tze for the Heisenberg antiferromagnet on the square lattice are analyzed. We allow for both Dzyaloshinskii-Moriya interactions, and additional terms associated with scalar spin chiralities that break time-reversal and reflection symmetries, but preserve their product. It is shown that these scalar spin chiralities, which can either arise spontaneously or are induced by the orbital coupling of the magnetic field, can lead to spinon bands with nontrivial Chern numbers and significantly enhanced thermal Hall conductivity. Associated states with zero-temperature magnetic order, which is thermally fluctuating at any $T>0$, also show a similarly enhanced thermal Hall conductivity.
The anomalous Hall effect (AHE), a Hall signal occurring without an external magnetic field, is one of the most significant phenomena. However, understanding the AHE mechanism has been challenging and largely restricted to ferromagnetic metals. Here, we investigate the recently discovered AHE in the chiral antiferromagnet Mn3Sn by measuring a thermal analog of the AHE, known as an anomalous thermal Hall effect (ATHE). The amplitude of the ATHE scales with the anomalous Hall conductivity of Mn3Sn over a wide temperature range, demonstrating that the AHE of Mn3Sn arises from a dissipationless intrinsic mechanism associated with the Berry curvature. Moreover, we find that the dissipationless AHE is significantly stabilized by shifting the Fermi level toward the magnetic Weyl points. Thus, in Mn3Sn, the Berry curvature emerging from the proposed magnetic Weyl fermion state is a key factor for the observed AHE and ATHE.
We have theoretically explored the intrinsic spin Hall effect (SHE) in the iron-based superconductor family with a variety of materials. The study is motivated by an observation that, in addition to an appreciable spin-orbit coupling in the Fe 3d sta tes, a character of the band structure in which Dirac cones appear below the Fermi energy may play a crucial role in producing a large SHE. Our investigation does indeed predict a substantially large spin Hall conductivity in the heavily hole-doped regime such as KFe$_2$As$_2$. The magnitude of the SHE has turned out to be comparable with that for Pt despite a relatively small spin-orbit coupling, which we identify to come from a huge contribution from the gap opening induced by the spin-orbit coupling at the Dirac point, which can become close to the Fermi energy for the heavy hole doping.
118 - Yuan-Fei Ma , Tai-Kai Ng 2015
In this paper we study the nonlinear current response of $U(1)$ spin liquids with large spinon Fermi surfaces under the perturbation of a time-dependent ac electric field $mathbf{E}(t)$ within the framework of an effective $U(1)$ gauge theory. In par ticular, the third-order nonlinear current response to ac electric fields is derived. We show that as in the case of linear current response, an in-gap power-law ($simomega^{eta}$) response is found for the nonlinear current at low frequency. The nonlinear susceptibility may also induce through process of third harmonic generation propagating EM wave with frequency $3omega$ inside the spin liquids.
Recent experimental evidence for a field-induced quantum spin liquid (QSL) in $alpha$-RuCl$_3$ calls for an understanding for the ground state of honeycomb Kitaev model under a magnetic field. In this work we address the nature of an enigmatic gaples s paramagnetic phase in the antiferromagnetic Kitave model, under an intermediate magnetic field perpendicular to the plane. Combining theoretical and numerical efforts, we identify this gapless phase as a $U(1)$ QSL with spinon Fermi surfaces. We also reveal the nature of continuous quantum phase transitions involving this $U(1)$ QSL, and obtain a phase diagram of the Kitaev model as a function of bond anisotropy and perpendicular magnetic field.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا