ﻻ يوجد ملخص باللغة العربية
We demonstrate that the plasmon in one-dimensional Coulomb interacting electron fluids can develop a finite-momentum maxon-roton-like nonmonotonic energy-momentum dispersion. Such an unusual nonmonotonicity arises from the strongly interacting $1/r$ Coulomb potential going beyond the conventional band linearization approximation used in the standard bosonization theories of Luttinger liquids. We provide details for the nonmonotonic plasmon dispersion using both bosonization and RPA theories. We also calculate the specific heat including the nonmonotonicity and discuss possibilities for observing the nonmonotonic plasmon dispersion in various physical systems including semiconductor quantum wires, carbon nanotubes, and the twisted bilayer graphene at sub-degree twist angles, which naturally realize one-dimensional domain-wall states.
The problem of photoemission from a quasi-1D material is studied. We identify two issues that play a key role in the detection of gapless Tomonaga-Luttinger liquid (TLL) phase. Firstly, we show how a disorder -- backward scattering as well as forward
We theoretically study THz-light-driven high-harmonic generation (HHG) in the spin-liquid states of the Kitaev honeycomb model with a magnetostriction coupling between spin and electric polarization. To compute the HHG spectra, we numerically solve t
We use Wilsons weak coupling ``momentum shell renormalization group method to show that two-particle interaction terms commonly neglected in bosonization of one-dimensional correlated electron systems with open boundaries are indeed irrelevant in the
In one-dimensional electronic systems with strong repulsive interactions, charge excitations propagate much faster than spin excitations. Such systems therefore have an intermediate temperature range [termed the spin-incoherent Luttinger liquid (SILL
We study the nature of many-body eigenstates of a system of interacting chiral spinless fermions on a ring. We find a coexistence of fermionic and bosonic types of eigenstates in parts of the many-body spectrum. Some bosonic eigenstates, native to th