ﻻ يوجد ملخص باللغة العربية
Deep learning for clinical applications is subject to stringent performance requirements, which raises a need for large labeled datasets. However, the enormous cost of labeling medical data makes this challenging. In this paper, we build a cost-sensitive active learning system for the problem of intracranial hemorrhage detection and segmentation on head computed tomography (CT). We show that our ensemble method compares favorably with the state-of-the-art, while running faster and using less memory. Moreover, our experiments are done using a substantially larger dataset than earlier papers on this topic. Since the labeling time could vary tremendously across examples, we model the labeling time and optimize the return on investment. We validate this idea by core-set selection on our large labeled dataset and by growing it with data from the wild.
This paper studies the problem of detecting and segmenting acute intracranial hemorrhage on head computed tomography (CT) scans. We propose to solve both tasks as a semantic segmentation problem using a patch-based fully convolutional network (PatchF
We design an active learning algorithm for cost-sensitive multiclass classification: problems where different errors have different costs. Our algorithm, COAL, makes predictions by regressing to each labels cost and predicting the smallest. On a new
Convolutional neural networks (CNNs) have achieved the state-of-the-art performance in skin lesion analysis. Compared with single CNN classifier, combining the results of multiple classifiers via fusion approaches shows to be more effective and robus
Computed tomography (CT) is the imaging modality used in the diagnosis of neurological emergencies, including acute stroke and traumatic brain injury. Advances in deep learning have led to models that can detect and segment hemorrhage on head CT. Pat
In this paper, we study the applicability of active learning in operative scenarios: more particularly, we consider the well-known contradiction between the active learning heuristics, which rank the pixels according to their uncertainty, and the use