ترغب بنشر مسار تعليمي؟ اضغط هنا

Active Learning for Cost-Sensitive Classification

120   0   0.0 ( 0 )
 نشر من قبل Akshay Krishnamurthy
 تاريخ النشر 2017
والبحث باللغة English




اسأل ChatGPT حول البحث

We design an active learning algorithm for cost-sensitive multiclass classification: problems where different errors have different costs. Our algorithm, COAL, makes predictions by regressing to each labels cost and predicting the smallest. On a new example, it uses a set of regressors that perform well on past data to estimate possible costs for each label. It queries only the labels that could be the best, ignoring the sure losers. We prove COAL can be efficiently implemented for any regression family that admits squared loss optimization; it also enjoys strong guarantees with respect to predictive performance and labeling effort. We empirically compare COAL to passive learning and several active learning baselines, showing significant improvements in labeling effort and test cost on real-world datasets.



قيم البحث

اقرأ أيضاً

Label space expansion for multi-label classification (MLC) is a methodology that encodes the original label vectors to higher dimensional codes before training and decodes the predicted codes back to the label vectors during testing. The methodology has been demonstrated to improve the performance of MLC algorithms when coupled with off-the-shelf error-correcting codes for encoding and decoding. Nevertheless, such a coding scheme can be complicated to implement, and cannot easily satisfy a common application need of cost-sensitive MLC---adapting to different evaluation criteria of interest. In this work, we show that a simpler coding scheme based on the concept of a reference pair of label vectors achieves cost-sensitivity more naturally. In particular, our proposed cost-sensitive reference pair encoding (CSRPE) algorithm contains cluster-based encoding, weight-based training and voting-based decoding steps, all utilizing the cost information. Furthermore, we leverage the cost information embedded in the code space of CSRPE to propose a novel active learning algorithm for cost-sensitive MLC. Extensive experimental results verify that CSRPE performs better than state-of-the-art algorithms across different MLC criteria. The results also demonstrate that the CSRPE-backed active learning algorithm is superior to existing algorithms for active MLC, and further justify the usefulness of CSRPE.
In many real-world applications of Machine Learning it is of paramount importance not only to provide accurate predictions, but also to ensure certain levels of robustness. Adversarial Training is a training procedure aiming at providing models that are robust to worst-case perturbations around predefined points. Unfortunately, one of the main issues in adversarial training is that robustness w.r.t. gradient-based attackers is always achieved at the cost of prediction accuracy. In this paper, a new algorithm, called Wasserstein Projected Gradient Descent (WPGD), for adversarial training is proposed. WPGD provides a simple way to obtain cost-sensitive robustness, resulting in a finer control of the robustness-accuracy trade-off. Moreover, WPGD solves an optimal transport problem on the output space of the network and it can efficiently discover directions where robustness is required, allowing to control the directional trade-off between accuracy and robustness. The proposed WPGD is validated in this work on image recognition tasks with different benchmark datasets and architectures. Moreover, real world-like datasets are often unbalanced: this paper shows that when dealing with such type of datasets, the performance of adversarial training are mainly affected in term of standard accuracy.
In binary classification framework, we are interested in making cost sensitive label predictions in the presence of uniform/symmetric label noise. We first observe that $0$-$1$ Bayes classifiers are not (uniform) noise robust in cost sensitive settin g. To circumvent this impossibility result, we present two schemes; unlike the existing methods, our schemes do not require noise rate. The first one uses $alpha$-weighted $gamma$-uneven margin squared loss function, $l_{alpha, usq}$, which can handle cost sensitivity arising due to domain requirement (using user given $alpha$) or class imbalance (by tuning $gamma$) or both. However, we observe that $l_{alpha, usq}$ Bayes classifiers are also not cost sensitive and noise robust. We show that regularized ERM of this loss function over the class of linear classifiers yields a cost sensitive uniform noise robust classifier as a solution of a system of linear equations. We also provide a performance bound for this classifier. The second scheme that we propose is a re-sampling based scheme that exploits the special structure of the uniform noise models and uses in-class probability $eta$ estimates. Our computational experiments on some UCI datasets with class imbalance show that classifiers of our two schemes are on par with the existing methods and in fact better in some cases w.r.t. Accuracy and Arithmetic Mean, without using/tuning noise rate. We also consider other cost sensitive performance measures viz., F measure and Weighted Cost for evaluation. As our re-sampling scheme requires estimates of $eta$, we provide a detailed comparative study of various $eta$ estimation methods on synthetic datasets, w.r.t. half a dozen evaluation criterion. Also, we provide understanding on the interpretation of cost parameters $alpha$ and $gamma$ using different synthetic data experiments.
Deep learning for clinical applications is subject to stringent performance requirements, which raises a need for large labeled datasets. However, the enormous cost of labeling medical data makes this challenging. In this paper, we build a cost-sensi tive active learning system for the problem of intracranial hemorrhage detection and segmentation on head computed tomography (CT). We show that our ensemble method compares favorably with the state-of-the-art, while running faster and using less memory. Moreover, our experiments are done using a substantially larger dataset than earlier papers on this topic. Since the labeling time could vary tremendously across examples, we model the labeling time and optimize the return on investment. We validate this idea by core-set selection on our large labeled dataset and by growing it with data from the wild.
We consider the problem of cost sensitive multiclass classification, where we would like to increase the sensitivity of an important class at the expense of a less important one. We adopt an {em apportioned margin} framework to address this problem, which enables an efficient margin shift between classes that share the same boundary. The decision boundary between all pairs of classes divides the margin between them in accordance to a given prioritization vector, which yields a tighter error bound for the important classes while also reducing the overall out-of-sample error. In addition to demonstrating an efficient implementation of our framework, we derive generalization bounds, demonstrate Fisher consistency, adapt the framework to Mercers kernel and to neural networks, and report promising empirical results on all accounts.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا