ﻻ يوجد ملخص باللغة العربية
Size can widely affect the surface chemical activities (SCAs) of nanomaterials in chemisorption, catalysis, surface effects, etc., but the underlying electronic nature has long remained mysterious. We report a general electronic principle that drives the origin of size-dependent SCAs by combining experimental probing and theoretical modeling. Using the chemisorption of H2O2 on TiO2 as a model reaction, we experimentally reveal that the central electronic process of surface chemical interactions lies in the competitive redistribution of surface atomic orbitals from energy band states into surface coordination bonds. By defining orbital potential, a site-dependent intrinsic electronic property that determines surface activities, we further establish a mathematical model to uncover the physical nature of how structural factors correlate to SCAs, particularly the roles of size. We discover that the electronic nature of size effect lies in its inverse correlation to orbital potential and amplification effect on other structural factors like defects and coordination numbers.
A detailed investigation of electronic-transport properties of Nd0.5Sr0.5CoO3 has been carried out as a function of grain size ranging from micrometer order down to an average size of 28 nm. Interestingly, we observe a size induced metal-insulator tr
We analyze the electronic structure of the Os(0001) surface by means of first-principle calculations based on Fully Relativistic (FR) Density Functional Theory (DFT) and a Projector Augmented-Wave (PAW) approach. We investigate surface states and res
Palladium diselenide (PdSe$_2$), a new type of two-dimensional noble metal dihalides (NMDCs), has received widespread attention for its excellent electrical and optoelectronic properties. Herein, high-quality continuous centimeter-scale PdSe$_2$ film
The electronic structure in the new transition metal carbide Ti4SiC3 has been investigated by bulk-sensitive soft x-ray emission spectroscopy and compared to the well-studied Ti3SiC2 and TiC systems. The measured high-resolution Ti L, C K and Si L x-
Modifying the optoelectronic properties of nanostructured materials through introduction of dopant atoms has attracted intense interest. Nevertheless, the approaches employed are often trial and error, preventing rational design. We demonstrate the p