ﻻ يوجد ملخص باللغة العربية
Modifying the optoelectronic properties of nanostructured materials through introduction of dopant atoms has attracted intense interest. Nevertheless, the approaches employed are often trial and error, preventing rational design. We demonstrate the power of large-scale electronic structure calculations with density functional theory (DFT) to build an atlas of preferential dopant sites for a range of M(II) and M(III) dopants in the representative III-V InP magic sized cluster (MSC). We quantify the thermodynamic favorability of dopants, which we identify to be both specific to the sites within the MSC (i.e., interior vs surface) and to the nature of the dopant atom (i.e., smaller Ga(III) vs larger Y(III) or Sc(III)). These observations motivate development of maps of the most and least favorable doping sites, which are consistent with some known experimental expectations but also yield unexpected observations. For isovalent doping (i.e., Y(III)/Sc(III) or Ga(III), we observed stronger sensitivity of the predicted energetics to the type of ligand orientation on the surface than to the dopant type, but divergent behavior is observed for whether interior doping is favorable. For charge balancing with M(II) (i.e., Zn or Cd) dopants, we show that the type of ligand removed during the doping reaction is critical. We show that limited cooperativity with dopants up to moderate concentrations occurs, indicating rapid single-dopant estimations of favorability from DFT can efficiently guide rational design. Our work emphasizes the strong importance of ligand chemistry and surface heterogeneity in determining paths to favorable doping in quantum dots, an observation that will be general to other III-V and II-VI quantum dot systems generally synthesized with carboxylate ligands.
Recent works suggest that the surface chemistry, in particular, the presence of oxygen vacancies can affect the polarization in a ferroelectric material. This should, in turn, influence the domain ordering driven by the need to screen the depolarizin
Using angle-resolved photoemission spectroscopy, we show the direct evidence of charge transfer between adsorbed molecules and metal substrate, i.e. chemisorption of CO on Pt(111) and Pt-Sn/Pt(111) 2x2 surfaces. The observed band structure shows a un
Unusual physical properties of single-wall carbon nanotubes have started a search for similar tubular structures of other elements. In this paper, we present a theoretical analysis of single-wall nanotubes of silicon and group III-V compounds. Starti
We show that the transition origins of electronic excitations identified by quantified natural transition orbital (QNTO) analysis can be employed to connect potential energy surfaces (PESs) according to their character across a widerange of molecular
We have studied the electronic structure of CdS/ZnSe coupled quantum dot, a novel heterostructure at the nano-scale. Our calculations reveal CdS/ZnSe coupled quantum dots to be of type-II in nature where the anion-p states play an important role in d