ﻻ يوجد ملخص باللغة العربية
A detailed investigation of electronic-transport properties of Nd0.5Sr0.5CoO3 has been carried out as a function of grain size ranging from micrometer order down to an average size of 28 nm. Interestingly, we observe a size induced metal-insulator transition in the lowest grain size sample while the bulk-like sample is metallic in the whole measured temperature regime. An analysis of the temperature dependent resistivity in the metallic regime reveals that the electron-electron interaction is the dominating mechanism while other processes like electron-magnon and electron-phonon scatterings are also likely to be present. The fascinating observation of enhanced low temperature upturn and minimum in resistivity on reduction of grain size is found due to electron-electron interaction (quantum interference effect). This effect is attributed to enhanced disorder on reduction of grain size. Interestingly, we observed a cross over from positive to negative magnetoresistance in the low temperature regime as the grain size is reduced. This observed sign reversal is attributed to enhanced phase separation on decreasing the grain size of the cobaltite.
The two dimensional kagome spin lattice structure of Mn atoms in the family of Mn$_3$X non-collinear antiferromagnets are providing substantial excitement in the exploration of Berry curvature physics and the associated non-trivial magnetotransport r
The linear reversal mechanism in FePt grains ranging from 2.316 nm to 5.404 nm has been simulated using atomistic spin dynamics, parametrized from ab-initio calculations. The Curie temperature and the critical temperature (T*), at which the linear re
Thin films prepared of semiconductor nanoparticles are promising for low-cost electronic applications such as transistors and solar cells. One hurdle for their breakthrough is their notoriously low conductivity. To address this, we precisely decorate
Size can widely affect the surface chemical activities (SCAs) of nanomaterials in chemisorption, catalysis, surface effects, etc., but the underlying electronic nature has long remained mysterious. We report a general electronic principle that drives
We report the magneto-transport properties and the electronic structure of TmSb. TmSb exhibits extremely large transverse magnetoresistance and Shubnikov-de Haas (SdH) oscillation at low temperature and high magnetic field. Interestingly, the split o