ﻻ يوجد ملخص باللغة العربية
The electronic structure in the new transition metal carbide Ti4SiC3 has been investigated by bulk-sensitive soft x-ray emission spectroscopy and compared to the well-studied Ti3SiC2 and TiC systems. The measured high-resolution Ti L, C K and Si L x-ray emission spectra are discussed with ab initio calculations based on density-functional theory including core-to-valence dipole matrix elements. The detailed investigations of the Ti-C and Ti-Si chemical bonds provide increased understanding of the physical properties of these nanolaminates. A strongly modified spectral shape is detected for the buried Si monolayers due to Si 3p hybridization with the Ti 3d orbitals. As a result of relaxation of the crystal structure and the charge-transfer from Ti (and Si) to C, the strength of the Ti-C covalent bond is increased. The differences between the electronic and crystal structures of Ti4SiC3 and Ti3SiC2 are discussed in relation to the number of Si layers per Ti layer in the two systems and the corresponding change of materials properties.
The electronic structure of the nanolaminated transition metal carbide Ti2AlC has been investigated by bulk-sensitive soft x-ray emission spectroscopy. The measured Ti L, C K and Al L emission spectra are compared with calculated spectra using ab ini
The electronic structures of epitaxially grown films of Ti3AlC2, Ti3SiC2 and Ti3GeC2 have been investigated by bulk-sensitive soft X-ray emission spectroscopy. The measured high-resolution Ti L, C K, Al L, Si L and Ge M emission spectra are compared
The binary alloy of titanium-tungsten (TiW) is an established diffusion barrier in high-power semiconductor devices, owing to its ability to suppress the diffusion of copper from the metallisation scheme into the surrounding silicon substructure. How
Chemical interaction and changes in local electronic structure of Cr, Fe, Co, Ni and Cu transition metals (TMs) upon formation of an $Al_{8}Co_{17}Cr_{17}Cu_{8}Fe_{17}Ni_{33}$ compositionally complex alloy (CCA) have been studied by X-ray absorption
Motivated by the recent synthesis of Ba$_2$CuO$_{3+delta}$ (BCO), a high temperature superconducting cuprate with putative $d_{3z^2-r^2}$ ground state symmetry, we investigated its electronic structure by means of Cu $L_3$ x-ray absorption (XAS) and