ترغب بنشر مسار تعليمي؟ اضغط هنا

Exploiting Rich Syntactic Information for Semantic Parsing with Graph-to-Sequence Model

325   0   0.0 ( 0 )
 نشر من قبل Lingfei Wu
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Existing neural semantic parsers mainly utilize a sequence encoder, i.e., a sequential LSTM, to extract word order features while neglecting other valuable syntactic information such as dependency graph or constituent trees. In this paper, we first propose to use the textit{syntactic graph} to represent three types of syntactic information, i.e., word order, dependency and constituency features. We further employ a graph-to-sequence model to encode the syntactic graph and decode a logical form. Experimental results on benchmark datasets show that our model is comparable to the state-of-the-art on Jobs640, ATIS and Geo880. Experimental results on adversarial examples demonstrate the robustness of the model is also improved by encoding more syntactic information.

قيم البحث

اقرأ أيضاً

We study the problem of integrating syntactic information from constituency trees into a neural model in Frame-semantic parsing sub-tasks, namely Target Identification (TI), FrameIdentification (FI), and Semantic Role Labeling (SRL). We use a Graph C onvolutional Network to learn specific representations of constituents, such that each constituent is profiled as the production grammar rule it corresponds to. We leverage these representations to build syntactic features for each word in a sentence, computed as the sum of all the constituents on the path between a word and a task-specific node in the tree, e.g. the target predicate for SRL. Our approach improves state-of-the-art results on the TI and SRL of ~1%and~3.5% points, respectively (+2.5% additional points are gained with BERT as input), when tested on FrameNet 1.5, while yielding comparable results on the CoNLL05 dataset to other syntax-aware systems.
While numerous attempts have been made to jointly parse syntax and semantics, high performance in one domain typically comes at the price of performance in the other. This trade-off contradicts the large body of research focusing on the rich interact ions at the syntax-semantics interface. We explore multiple model architectures which allow us to exploit the rich syntactic and semantic annotations contained in the Universal Decompositional Semantics (UDS) dataset, jointly parsing Universal Dependencies and UDS to obtain state-of-the-art results in both formalisms. We analyze the behaviour of a joint model of syntax and semantics, finding patterns supported by linguistic theory at the syntax-semantics interface. We then investigate to what degree joint modeling generalizes to a multilingual setting, where we find similar trends across 8 languages.
Definition Extraction (DE) is one of the well-known topics in Information Extraction that aims to identify terms and their corresponding definitions in unstructured texts. This task can be formalized either as a sentence classification task (i.e., co ntaining term-definition pairs or not) or a sequential labeling task (i.e., identifying the boundaries of the terms and definitions). The previous works for DE have only focused on one of the two approaches, failing to model the inter-dependencies between the two tasks. In this work, we propose a novel model for DE that simultaneously performs the two tasks in a single framework to benefit from their inter-dependencies. Our model features deep learning architectures to exploit the global structures of the input sentences as well as the semantic consistencies between the terms and the definitions, thereby improving the quality of the representation vectors for DE. Besides the joint inference between sentence classification and sequential labeling, the proposed model is fundamentally different from the prior work for DE in that the prior work has only employed the local structures of the input sentences (i.e., word-to-word relations), and not yet considered the semantic consistencies between terms and definitions. In order to implement these novel ideas, our model presents a multi-task learning framework that employs graph convolutional neural networks and predicts the dependency paths between the terms and the definitions. We also seek to enforce the consistency between the representations of the terms and definitions both globally (i.e., increasing semantic consistency between the representations of the entire sentences and the terms/definitions) and locally (i.e., promoting the similarity between the representations of the terms and the definitions).
154 - Ruisheng Cao , Su Zhu , Chen Liu 2019
Semantic parsing converts natural language queries into structured logical forms. The paucity of annotated training samples is a fundamental challenge in this field. In this work, we develop a semantic parsing framework with the dual learning algorit hm, which enables a semantic parser to make full use of data (labeled and even unlabeled) through a dual-learning game. This game between a primal model (semantic parsing) and a dual model (logical form to query) forces them to regularize each other, and can achieve feedback signals from some prior-knowledge. By utilizing the prior-knowledge of logical form structures, we propose a novel reward signal at the surface and semantic levels which tends to generate complete and reasonable logical forms. Experimental results show that our approach achieves new state-of-the-art performance on ATIS dataset and gets competitive performance on Overnight dataset.
One of the biggest bottlenecks in building accurate, high coverage neural open IE systems is the need for large labelled corpora. The diversity of open domain corpora and the variety of natural language expressions further exacerbate this problem. In this paper, we propose a syntactic and semantic-driven learning approach, which can learn neural open IE models without any human-labelled data by leveraging syntactic and semantic knowledge as noisier, higher-level supervisions. Specifically, we first employ syntactic patterns as data labelling functions and pretrain a base model using the generated labels. Then we propose a syntactic and semantic-driven reinforcement learning algorithm, which can effectively generalize the base model to open situations with high accuracy. Experimental results show that our approach significantly outperforms the supervised counterparts, and can even achieve competitive performance to supervised state-of-the-art (SoA) model

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا