ترغب بنشر مسار تعليمي؟ اضغط هنا

Encoding Syntactic Constituency Paths for Frame-Semantic Parsing with Graph Convolutional Networks

99   0   0.0 ( 0 )
 نشر من قبل Emanuele Bastianelli
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the problem of integrating syntactic information from constituency trees into a neural model in Frame-semantic parsing sub-tasks, namely Target Identification (TI), FrameIdentification (FI), and Semantic Role Labeling (SRL). We use a Graph Convolutional Network to learn specific representations of constituents, such that each constituent is profiled as the production grammar rule it corresponds to. We leverage these representations to build syntactic features for each word in a sentence, computed as the sum of all the constituents on the path between a word and a task-specific node in the tree, e.g. the target predicate for SRL. Our approach improves state-of-the-art results on the TI and SRL of ~1%and~3.5% points, respectively (+2.5% additional points are gained with BERT as input), when tested on FrameNet 1.5, while yielding comparable results on the CoNLL05 dataset to other syntax-aware systems.



قيم البحث

اقرأ أيضاً

324 - Kun Xu , Lingfei Wu , Zhiguo Wang 2018
Existing neural semantic parsers mainly utilize a sequence encoder, i.e., a sequential LSTM, to extract word order features while neglecting other valuable syntactic information such as dependency graph or constituent trees. In this paper, we first p ropose to use the textit{syntactic graph} to represent three types of syntactic information, i.e., word order, dependency and constituency features. We further employ a graph-to-sequence model to encode the syntactic graph and decode a logical form. Experimental results on benchmark datasets show that our model is comparable to the state-of-the-art on Jobs640, ATIS and Geo880. Experimental results on adversarial examples demonstrate the robustness of the model is also improved by encoding more syntactic information.
While numerous attempts have been made to jointly parse syntax and semantics, high performance in one domain typically comes at the price of performance in the other. This trade-off contradicts the large body of research focusing on the rich interact ions at the syntax-semantics interface. We explore multiple model architectures which allow us to exploit the rich syntactic and semantic annotations contained in the Universal Decompositional Semantics (UDS) dataset, jointly parsing Universal Dependencies and UDS to obtain state-of-the-art results in both formalisms. We analyze the behaviour of a joint model of syntax and semantics, finding patterns supported by linguistic theory at the syntax-semantics interface. We then investigate to what degree joint modeling generalizes to a multilingual setting, where we find similar trends across 8 languages.
We propose a novel constituency parsing model that casts the parsing problem into a series of pointing tasks. Specifically, our model estimates the likelihood of a span being a legitimate tree constituent via the pointing score corresponding to the b oundary words of the span. Our parsing model supports efficient top-down decoding and our learning objective is able to enforce structural consistency without resorting to the expensive CKY inference. The experiments on the standard English Penn Treebank parsing task show that our method achieves 92.78 F1 without using pre-trained models, which is higher than all the existing methods with similar time complexity. Using pre-trained BERT, our model achieves 95.48 F1, which is competitive with the state-of-the-art while being faster. Our approach also establishes new state-of-the-art in Basque and Swedish in the SPMRL shared tasks on multilingual constituency parsing.
Event factuality prediction (EFP) is the task of assessing the degree to which an event mentioned in a sentence has happened. For this task, both syntactic and semantic information are crucial to identify the important context words. The previous wor k for EFP has only combined these information in a simple way that cannot fully exploit their coordination. In this work, we introduce a novel graph-based neural network for EFP that can integrate the semantic and syntactic information more effectively. Our experiments demonstrate the advantage of the proposed model for EFP.
The celebrated Seq2Seq technique and its numerous variants achieve excellent performance on many tasks such as neural machine translation, semantic parsing, and math word problem solving. However, these models either only consider input objects as se quences while ignoring the important structural information for encoding, or they simply treat output objects as sequence outputs instead of structural objects for decoding. In this paper, we present a novel Graph-to-Tree Neural Networks, namely Graph2Tree consisting of a graph encoder and a hierarchical tree decoder, that encodes an augmented graph-structured input and decodes a tree-structured output. In particular, we investigated our model for solving two problems, neural semantic parsing and math word problem. Our extensive experiments demonstrate that our Graph2Tree model outperforms or matches the performance of other state-of-the-art models on these tasks.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا