ترغب بنشر مسار تعليمي؟ اضغط هنا

A Joint Model for Definition Extraction with Syntactic Connection and Semantic Consistency

152   0   0.0 ( 0 )
 نشر من قبل Amir Pouran Ben Veyseh
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Definition Extraction (DE) is one of the well-known topics in Information Extraction that aims to identify terms and their corresponding definitions in unstructured texts. This task can be formalized either as a sentence classification task (i.e., containing term-definition pairs or not) or a sequential labeling task (i.e., identifying the boundaries of the terms and definitions). The previous works for DE have only focused on one of the two approaches, failing to model the inter-dependencies between the two tasks. In this work, we propose a novel model for DE that simultaneously performs the two tasks in a single framework to benefit from their inter-dependencies. Our model features deep learning architectures to exploit the global structures of the input sentences as well as the semantic consistencies between the terms and the definitions, thereby improving the quality of the representation vectors for DE. Besides the joint inference between sentence classification and sequential labeling, the proposed model is fundamentally different from the prior work for DE in that the prior work has only employed the local structures of the input sentences (i.e., word-to-word relations), and not yet considered the semantic consistencies between terms and definitions. In order to implement these novel ideas, our model presents a multi-task learning framework that employs graph convolutional neural networks and predicts the dependency paths between the terms and the definitions. We also seek to enforce the consistency between the representations of the terms and definitions both globally (i.e., increasing semantic consistency between the representations of the entire sentences and the terms/definitions) and locally (i.e., promoting the similarity between the representations of the terms and the definitions).



قيم البحث

اقرأ أيضاً

While numerous attempts have been made to jointly parse syntax and semantics, high performance in one domain typically comes at the price of performance in the other. This trade-off contradicts the large body of research focusing on the rich interact ions at the syntax-semantics interface. We explore multiple model architectures which allow us to exploit the rich syntactic and semantic annotations contained in the Universal Decompositional Semantics (UDS) dataset, jointly parsing Universal Dependencies and UDS to obtain state-of-the-art results in both formalisms. We analyze the behaviour of a joint model of syntax and semantics, finding patterns supported by linguistic theory at the syntax-semantics interface. We then investigate to what degree joint modeling generalizes to a multilingual setting, where we find similar trends across 8 languages.
One of the biggest bottlenecks in building accurate, high coverage neural open IE systems is the need for large labelled corpora. The diversity of open domain corpora and the variety of natural language expressions further exacerbate this problem. In this paper, we propose a syntactic and semantic-driven learning approach, which can learn neural open IE models without any human-labelled data by leveraging syntactic and semantic knowledge as noisier, higher-level supervisions. Specifically, we first employ syntactic patterns as data labelling functions and pretrain a base model using the generated labels. Then we propose a syntactic and semantic-driven reinforcement learning algorithm, which can effectively generalize the base model to open situations with high accuracy. Experimental results show that our approach significantly outperforms the supervised counterparts, and can even achieve competitive performance to supervised state-of-the-art (SoA) model
324 - Kun Xu , Lingfei Wu , Zhiguo Wang 2018
Existing neural semantic parsers mainly utilize a sequence encoder, i.e., a sequential LSTM, to extract word order features while neglecting other valuable syntactic information such as dependency graph or constituent trees. In this paper, we first p ropose to use the textit{syntactic graph} to represent three types of syntactic information, i.e., word order, dependency and constituency features. We further employ a graph-to-sequence model to encode the syntactic graph and decode a logical form. Experimental results on benchmark datasets show that our model is comparable to the state-of-the-art on Jobs640, ATIS and Geo880. Experimental results on adversarial examples demonstrate the robustness of the model is also improved by encoding more syntactic information.
Aspect Sentiment Triplet Extraction (ASTE) aims to extract triplets from sentences, where each triplet includes an entity, its associated sentiment, and the opinion span explaining the reason for the sentiment. Most existing research addresses this p roblem in a multi-stage pipeline manner, which neglects the mutual information between such three elements and has the problem of error propagation. In this paper, we propose a Semantic and Syntactic Enhanced aspect Sentiment triplet Extraction model (S3E2) to fully exploit the syntactic and semantic relationships between the triplet elements and jointly extract them. Specifically, we design a Graph-Sequence duel representation and modeling paradigm for the task of ASTE: we represent the semantic and syntactic relationships between word pairs in a sentence by graph and encode it by Graph Neural Networks (GNNs), as well as modeling the original sentence by LSTM to preserve the sequential information. Under this setting, we further apply a more efficient inference strategy for the extraction of triplets. Extensive evaluations on four benchmark datasets show that S3E2 significantly outperforms existing approaches, which proves our S3E2s superiority and flexibility in an end-to-end fashion.
Extracting relational triples from texts is a fundamental task in knowledge graph construction. The popular way of existing methods is to jointly extract entities and relations using a single model, which often suffers from the overlapping triple pro blem. That is, there are multiple relational triples that share the same entities within one sentence. In this work, we propose an effective cascade dual-decoder approach to extract overlapping relational triples, which includes a text-specific relation decoder and a relation-corresponded entity decoder. Our approach is straightforward: the text-specific relation decoder detects relations from a sentence according to its text semantics and treats them as extra features to guide the entity extraction; for each extracted relation, which is with trainable embedding, the relation-corresponded entity decoder detects the corresponding head and tail entities using a span-based tagging scheme. In this way, the overlapping triple problem is tackled naturally. Experiments on two public datasets demonstrate that our proposed approach outperforms state-of-the-art methods and achieves better F1 scores under the strict evaluation metric. Our implementation is available at https://github.com/prastunlp/DualDec.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا