ﻻ يوجد ملخص باللغة العربية
Numerous powerful point process models have been developed to understand temporal patterns in sequential data from fields such as health-care, electronic commerce, social networks, and natural disaster forecasting. In this paper, we develop novel models for learning the temporal distribution of human activities in streaming data (e.g., videos and person trajectories). We propose an integrated framework of neural networks and temporal point processes for predicting when the next activity will happen. Because point processes are limited to taking event frames as input, we propose a simple yet effective mechanism to extract features at frames of interest while also preserving the rich information in the remaining frames. We evaluate our model on two challenging datasets. The results show that our model outperforms traditional statistical point process approaches significantly, demonstrating its effectiveness in capturing the underlying temporal dynamics as well as the correlation within sequential activities. Furthermore, we also extend our model to a joint estimation framework for predicting the timing, spatial location, and category of the activity simultaneously, to answer the when, where, and what of activity prediction.
We review the current state of empirical knowledge of the total budget of baryonic matter in the Universe as observed since the epoch of reionization. Our summary examines on three milestone redshifts since the reionization of H in the IGM, z = 3, 1,
Explaining the decision of a multi-modal decision-maker requires to determine the evidence from both modalities. Recent advances in XAI provide explanations for models trained on still images. However, when it comes to modeling multiple sensory modal
Video anomaly detection (VAD) has been extensively studied. However, research on egocentric traffic videos with dynamic scenes lacks large-scale benchmark datasets as well as effective evaluation metrics. This paper proposes traffic anomaly detection
In times marked by political turbulence and uncertainty, as well as increasing divisiveness and hyperpartisanship, Governments need to use every tool at their disposal to understand and respond to the concerns of their citizens. We study issues raise
Distortion quantification of point clouds plays a stealth, yet vital role in a wide range of human and machine perception tasks. For human perception tasks, a distortion quantification can substitute subjective experiments to guide 3D visualization;