ترغب بنشر مسار تعليمي؟ اضغط هنا

What, When and Where of petitions submitted to the UK Government during a time of chaos

75   0   0.0 ( 0 )
 نشر من قبل Taha Yasseri
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In times marked by political turbulence and uncertainty, as well as increasing divisiveness and hyperpartisanship, Governments need to use every tool at their disposal to understand and respond to the concerns of their citizens. We study issues raised by the UK public to the Government during 2015-2017 (surrounding the UK EU-membership referendum), mining public opinion from a dataset of 10,950 petitions (representing 30.5 million signatures). We extract the main issues with a ground-up natural language processing (NLP) method, latent Dirichlet allocation (LDA). We then investigate their temporal dynamics and geographic features. We show that whilst the popularity of some issues is stable across the two years, others are highly influenced by external events, such as the referendum in June 2016. We also study the relationship between petitions issues and where their signatories are geographically located. We show that some issues receive support from across the whole country but others are far more local. We then identify six distinct clusters of constituencies based on the issues which constituents sign. Finally, we validate our approach by comparing the petitions issues with the top issues reported in Ipsos MORI survey data. These results show the huge power of computationally analyzing petitions to understand not only what issues citizens are concerned about but also when and from where.



قيم البحث

اقرأ أيضاً

163 - Scott A. Hale , Helen Margetts , 2013
Now that so much of collective action takes place online, web-generated data can further understanding of the mechanics of Internet-based mobilisation. This trace data offers social science researchers the potential for new forms of analysis, using r eal-time transactional data based on entire populations, rather than sample-based surveys of what people think they did or might do. This paper uses a `big data approach to track the growth of over 8,000 petitions to the UK Government on the No. 10 Downing Street website for two years, analysing the rate of growth per day and testing the hypothesis that the distribution of daily change will be leptokurtic (rather than normal) as previous research on agenda setting would suggest. This hypothesis is confirmed, suggesting that Internet-based mobilisation is characterized by tipping points (or punctuated equilibria) and explaining some of the volatility in online collective action. We find also that most successful petitions grow quickly and that the number of signatures a petition receives on its first day is a significant factor in explaining the overall number of signatures a petition receives during its lifetime. These findings have implications for the strategies of those initiating petitions and the design of web sites with the aim of maximising citizen engagement with policy issues.
We review the current state of empirical knowledge of the total budget of baryonic matter in the Universe as observed since the epoch of reionization. Our summary examines on three milestone redshifts since the reionization of H in the IGM, z = 3, 1, and 0, with emphasis on the endpoints. We review the observational techniques used to discover and characterize the phases of baryons. In the spirit of the meeting, the level is aimed at a diverse and non-expert audience and additional attention is given to describe how space missions expected to launch within the next decade will impact this scientific field.
We examine the temporal evolution of digital communication activity relating to the American anti-capitalist movement Occupy Wall Street. Using a high-volume sample from the microblogging site Twitter, we investigate changes in Occupy participant eng agement, interests, and social connectivity over a fifteen month period starting three months prior to the movements first protest action. The results of this analysis indicate that, on Twitter, the Occupy movement tended to elicit participation from a set of highly interconnected users with pre-existing interests in domestic politics and foreign social movements. These users, while highly vocal in the months immediately following the birth of the movement, appear to have lost interest in Occupy related communication over the remainder of the study period.
Numerous powerful point process models have been developed to understand temporal patterns in sequential data from fields such as health-care, electronic commerce, social networks, and natural disaster forecasting. In this paper, we develop novel mod els for learning the temporal distribution of human activities in streaming data (e.g., videos and person trajectories). We propose an integrated framework of neural networks and temporal point processes for predicting when the next activity will happen. Because point processes are limited to taking event frames as input, we propose a simple yet effective mechanism to extract features at frames of interest while also preserving the rich information in the remaining frames. We evaluate our model on two challenging datasets. The results show that our model outperforms traditional statistical point process approaches significantly, demonstrating its effectiveness in capturing the underlying temporal dynamics as well as the correlation within sequential activities. Furthermore, we also extend our model to a joint estimation framework for predicting the timing, spatial location, and category of the activity simultaneously, to answer the when, where, and what of activity prediction.
Recently, messaging applications, such as WhatsApp, have been reportedly abused by misinformation campaigns, especially in Brazil and India. A notable form of abuse in WhatsApp relies on several manipulated images and memes containing all kinds of fa ke stories. In this work, we performed an extensive data collection from a large set of WhatsApp publicly accessible groups and fact-checking agency websites. This paper opens a novel dataset to the research community containing fact-checked fake images shared through WhatsApp for two distinct scenarios known for the spread of fake news on the platform: the 2018 Brazilian elections and the 2019 Indian elections.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا