ترغب بنشر مسار تعليمي؟ اضغط هنا

Underlying burning resistant mechanisms for titanium alloy

160   0   0.0 ( 0 )
 نشر من قبل Haifei Zhan HF
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The titanium fire as produced during high pressure and friction is the major failure scenario for aero-engines. To alleviate this issue, Ti-V-Cr and Ti-Cu-Al series burn resistant titanium alloys have been developed. However, which burn resistant alloy exhibit better property with reasonable cost needs to be evaluated. This work unveils the burning mechanisms of these alloys and discusses whether burn resistance of Cr and V can be replaced by Cu, on which thorough exploration is lacking. Two representative burn resistant alloys are considered, including Ti14(Ti-13Cu-1Al-0.2Si) and Ti40(Ti-25V-15Cr-0.2Si)alloys. Compared with the commercial non-burn resistant titanium alloy, i.e., TC4(Ti-6Al-4V)alloy, it has been found that both Ti14 and Ti40 alloys form protective shields during the burning process. Specifically, for Ti14 alloy, a clear Cu-rich layer is formed at the interface between burning product zone and heat affected zone, which consumes oxygen by producing Cu-O compounds and impedes the reaction with Ti-matrix. This work has established a fundamental understanding of burning resistant mechanisms for titanium alloys. Importantly, it is found that Cu could endow titanium alloys with similar burn resistant capability as that of V or Cr, which opens a cost-effective avenue to design burn resistant titanium alloys.



قيم البحث

اقرأ أيضاً

Titanium diboride (TiB2) is a low-density refractory material belonging to the family of ultra-high temperature ceramics (UHTCs). This paper reports on the production and microstructural and optical characterization of nearly fully dense TiB2, with p articular interest to its potential utilization as novel thermal solar absorber. Monolithic bulk samples are produced starting from elemental reactants by a two-step method consisting of the Self-propagating High-temperature Synthesis (SHS) followed by the Spark Plasma Sintering (SPS) of the resulting powders. The surface of obtained samples has-been characterized from the microstructural and topological points of view. The hemispherical reflectance spectrum has been measured from 0.3 to 15 um wavelength, to evaluate the potential of this material as solar absorber for future concentrating solar plants.
Synaptic devices with linear high-speed switching can accelerate learning in artificial neural networks (ANNs) embodied in hardware. Conventional resistive memories however suffer from high write noise and asymmetric conductance tuning, preventing pa rallel programming of ANN arrays as needed to surpass conventional computing efficiency. Electrochemical random-access memories (ECRAMs), where resistive switching occurs by ion insertion into a redox-active channel address these challenges due to their linear switching and low noise. ECRAMs using two-dimensional (2D) materials and metal oxides suffer from slow ion kinetics, whereas organic ECRAMs enable high-speed operation but face significant challenges towards on-chip integration due to poor temperature stability of polymers. Here, we demonstrate ECRAMs using 2D titanium carbide (Ti3C2Tx) MXene that combines the high speed of organics and the integration compatibility of inorganic materials in a single high-performance device. Our ECRAMs combine the speed, linearity, write noise, switching energy and endurance metrics essential for parallel acceleration of ANNs, and importantly, they are stable after heat treatment needed for back-end-of-line integration with Si electronics. The high speed and performance of these ECRAMs introduces MXenes, a large family of 2D carbides and nitrides with more than 30 compositions synthesized to date, as very promising candidates for devices operating at the nexus of electrochemistry and electronics.
The successful application of titanium oxide-graphene hybrids in the fields of photocatalysis, photovoltaics and photodetection strongly depends on the interfacial contact between both materials. The need to provide a good coupling between the enabli ng conductor and the photoactive phase prompted us to directly grow conducting graphenic structures on TiO2 crystals. We here report on the direct synthesis of tailored graphenic structures by using Plasma Assisted Chemical Vapour Deposition that present a clean junction with the prototypical titanium oxide (110) surface. Chemical analysis of the interface indicates chemical bonding between both materials. Photocurrent measurements under UV light illumination manifest that the charge transfer across the interface is efficient. Moreover, the influence of the synthesis atmosphere, gas precursor (C2H2) and diluents (Ar, O2), on the interface and on the structure of the as-grown graphenic material is assessed. The inclusion of O2 promotes vertical growth of partially oxidized carbon nanodots/rods with controllable height and density. The deposition with Ar results in continuous graphenic films with low resistivity (6.8x10-6 ohm x m). The synthesis protocols developed here are suitable to produce tailored carbon-semiconductor structures on a variety of practical substrates as thin films, pillars or nanoparticles.
A quite general device analysis method that allows the direct evaluation of optical and recombination losses in crystalline silicon (c-Si)-based solar cells has been developed. By applying this technique, the optical and physical limiting factors of the state-of-the-art solar cells with ~20% efficiencies have been revealed. In the established method, the carrier loss mechanisms are characterized from the external quantum efficiency (EQE) analysis with very low computational cost. In particular, the EQE analyses of textured c-Si solar cells are implemented by employing the experimental reflectance spectra obtained directly from the actual devices while using flat optical models without any fitting parameters. We find that the developed method provides almost perfect fitting to EQE spectra reported for various textured c-Si solar cells, including c-Si heterojunction solar cells, a dopant-free c-Si solar cell with a MoOx layer, and an n-type passivated emitter with rear locally diffused (PERL) solar cell. The modeling of the recombination loss further allows the extraction of the minority carrier diffusion length and surface recombination velocity from the EQE analysis. Based on the EQE analysis results, the carrier loss mechanisms in different types of c-Si solar cells are discussed.
In the present investigation, a strongly bonded strip of an aluminium-magnesium based alloy AA5086 is successfully produced through accumulative roll bonding (ARB). A maximum of up to eight passes has been used for the purpose. Microstructural charac terization using electron backscatter diffraction (EBSD) technique indicates the formation of submicron sized (~200-300 nm) subgrains inside the layered microstructure. The material is strongly textured where individual layers possess typical FCC rolling texture components. More than three times enhancement in 0.2% proof stress (PS) has been obtained after 8 passes due to grain refinement and strain hardening
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا