ﻻ يوجد ملخص باللغة العربية
The successful application of titanium oxide-graphene hybrids in the fields of photocatalysis, photovoltaics and photodetection strongly depends on the interfacial contact between both materials. The need to provide a good coupling between the enabling conductor and the photoactive phase prompted us to directly grow conducting graphenic structures on TiO2 crystals. We here report on the direct synthesis of tailored graphenic structures by using Plasma Assisted Chemical Vapour Deposition that present a clean junction with the prototypical titanium oxide (110) surface. Chemical analysis of the interface indicates chemical bonding between both materials. Photocurrent measurements under UV light illumination manifest that the charge transfer across the interface is efficient. Moreover, the influence of the synthesis atmosphere, gas precursor (C2H2) and diluents (Ar, O2), on the interface and on the structure of the as-grown graphenic material is assessed. The inclusion of O2 promotes vertical growth of partially oxidized carbon nanodots/rods with controllable height and density. The deposition with Ar results in continuous graphenic films with low resistivity (6.8x10-6 ohm x m). The synthesis protocols developed here are suitable to produce tailored carbon-semiconductor structures on a variety of practical substrates as thin films, pillars or nanoparticles.
In this letter, the transient behavior of a ferroelectric (FE) metal-oxide-semiconductor (MOS) capacitor is theoretically investigated with a series resistor. It is shown that compared to a conventional high-k dielectric MOS capacitor, a significant
This work studies the effect of four different types of buffer layers on the structural and optical properties of InGaN layers grown on Si(111) substrates and their correlation with electrical characteristics. The vertical electrical conduction of n-
Synaptic devices with linear high-speed switching can accelerate learning in artificial neural networks (ANNs) embodied in hardware. Conventional resistive memories however suffer from high write noise and asymmetric conductance tuning, preventing pa
We report on low-temperature MOVPE growth of silicon delta-doped b{eta}-Ga2O3 films with low FWHM. The as-grown films are characterized using Secondary-ion mass spectroscopy, Capacitance-Voltage and Hall techniques. SIMS measurements show that surfac
The titanium fire as produced during high pressure and friction is the major failure scenario for aero-engines. To alleviate this issue, Ti-V-Cr and Ti-Cu-Al series burn resistant titanium alloys have been developed. However, which burn resistant all