ترغب بنشر مسار تعليمي؟ اضغط هنا

Evolution of texture and microstructure during accumulative roll bonding of aluminum AA5086 alloy

58   0   0.0 ( 0 )
 نشر من قبل Suhas Kumar
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In the present investigation, a strongly bonded strip of an aluminium-magnesium based alloy AA5086 is successfully produced through accumulative roll bonding (ARB). A maximum of up to eight passes has been used for the purpose. Microstructural characterization using electron backscatter diffraction (EBSD) technique indicates the formation of submicron sized (~200-300 nm) subgrains inside the layered microstructure. The material is strongly textured where individual layers possess typical FCC rolling texture components. More than three times enhancement in 0.2% proof stress (PS) has been obtained after 8 passes due to grain refinement and strain hardening



قيم البحث

اقرأ أيضاً

Single-photon emitters in gallium nitride (GaN) are gaining interest as attractive quantum systems due to the well-established techniques for growth and nanofabrication of the host material, as well as its remarkable chemical stability and optoelectr onic properties. We investigate the nature of such single-photon emitters in GaN with a systematic analysis of various samples produced under different growth conditions. We explore the effect that intrinsic structural defects (dislocations and stacking faults), doping and crystal orientation in GaN have on the formation of quantum emitters. We investigate the relationship between the position of the emitters (determined via spectroscopy and photoluminescence measurements) and the location of threading dislocations (characterised both via atomic force microscopy and cathodoluminescence). We find that quantum emitters do not correlate with stacking faults or dislocations; instead, they are more likely to originate from point defects or impurities whose density is modulated by the local extended defect density.
Ultraviolet (UV) plasmonics aims at combining the strong absorption bands of molecules in the UV range with the intense electromagnetic fields of plasmonic nanostructures to promote surface-enhanced spectroscopy and catalysis. Currently, aluminum is the most widely used metal for UV plasmonics, and is generally assumed to be remarkably stable thanks to its natural alumina layer passivating the metal surface. However, we find here that under 266 nm UV illumination, aluminum can undergo a dramatic photocorrosion in water within a few tens of seconds and even at low average UV powers. This aluminum instability in water environments critically limits the UV plasmonics applications. We show that the aluminum photocorrosion is related to the nonlinear absorption by water in the UV range leading to the production of hydroxyl radicals. Different corrosion protection approaches are tested using scavengers for reactive oxygen species and polymer layers deposited on top of the aluminum structures. Using optimized protection, we achieve a ten-fold increase in the available UV power range leading to no visible photocorrosion effects. This technique is crucial to achieve stable use of aluminum nanostructures for UV plasmonics in aqueous solutions.
We have studied the properties of relatively thick (about 120 nm) magnetic composite films grown by pulsed laser deposition method using (GaSb)$_{0.59}$(MnSb)$_{0.41}$ eutectic compound as a target for sputtering. For the studied films we have observ ed ferromagnetism and anomalous Hall effect above the room temperature, it manifests the presence of spin-polarized carriers. Electron microscopy, atomic and magnetic force microscopy results suggests that films under study have homogenous columnar structure in the bulk while MnSb inclusions accumulate near its surface. This is in good agreement with high mobility values of charge carriers. Based on our data we conclude that room temperature magnetic and magnetotransport properties of the films are defined by MnSb inclusions.
Strain engineering is the art of inducing controlled lattice distortions in a material to modify specific physicochemical properties. Strain engineering is applied for basic fundamental studies of physics and chemistry of solids but also for device f abrication through the development of materials with new functionalities. Thin films are one of the most important tools for strain engineering. Thin films can in fact develop large strain due to the crystalline constrains at the interface with the substrate and/or as the result of specific morphological features that can be selected by an appropriate tuning of the deposition parameters. Within this context, the in situ measurement of the substrate curvature is a powerful diagnostic tool allowing a real time monitoring of the stress state of the growing film. This manuscript reviews a few recent applications of this technique and presents new measurements that point out the great potentials of the substrate curvature measurement in strain engineering. Our study also shows how, due to the high sensitivity of the technique, the correct interpretation of the results can be in certain cases not trivial and require complementary characterizations and an accurate knowledge of the physicochemical properties of the materials under investigation.
Magnesium alloys have been considered to be favorable biodegradable metallic materials used in orthopedic and cardiovascular applications. We introduce NH+2 to the AZ31 Mg alloy surface by ion implantation at the energy of 50 KeV with doses ranging f rom 1e16 ions/cm2 to 1e17 ions/cm2 to improve its corrosion resistance and biocompatibility. Surface morphology, mechanical properties, corrosion behavior and biocompatibility are studied in the experiments. The analysis confirms that the modified surface with smoothness and hydrophobicity significantly improves the corrosion resistance and biocompatibility while maintaining the mechanical property of the alloy.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا