ﻻ يوجد ملخص باللغة العربية
In the present investigation, a strongly bonded strip of an aluminium-magnesium based alloy AA5086 is successfully produced through accumulative roll bonding (ARB). A maximum of up to eight passes has been used for the purpose. Microstructural characterization using electron backscatter diffraction (EBSD) technique indicates the formation of submicron sized (~200-300 nm) subgrains inside the layered microstructure. The material is strongly textured where individual layers possess typical FCC rolling texture components. More than three times enhancement in 0.2% proof stress (PS) has been obtained after 8 passes due to grain refinement and strain hardening
Single-photon emitters in gallium nitride (GaN) are gaining interest as attractive quantum systems due to the well-established techniques for growth and nanofabrication of the host material, as well as its remarkable chemical stability and optoelectr
Ultraviolet (UV) plasmonics aims at combining the strong absorption bands of molecules in the UV range with the intense electromagnetic fields of plasmonic nanostructures to promote surface-enhanced spectroscopy and catalysis. Currently, aluminum is
We have studied the properties of relatively thick (about 120 nm) magnetic composite films grown by pulsed laser deposition method using (GaSb)$_{0.59}$(MnSb)$_{0.41}$ eutectic compound as a target for sputtering. For the studied films we have observ
Strain engineering is the art of inducing controlled lattice distortions in a material to modify specific physicochemical properties. Strain engineering is applied for basic fundamental studies of physics and chemistry of solids but also for device f
Magnesium alloys have been considered to be favorable biodegradable metallic materials used in orthopedic and cardiovascular applications. We introduce NH+2 to the AZ31 Mg alloy surface by ion implantation at the energy of 50 KeV with doses ranging f