ﻻ يوجد ملخص باللغة العربية
The focus of this work is a posteriori error estimation for stochastic Galerkin approximations of parameter-dependent linear elasticity equations. The starting point is a three-field PDE model in which the Youngs modulus is an affine function of a countable set of parameters. We analyse the weak formulation, its stability with respect to a weighted norm and discuss approximation using stochastic Galerkin mixed finite element methods (SG-MFEMs). We introduce a novel a posteriori error estimation scheme and establish upper and lower bounds for the SG-MFEM error. The constants in the bounds are independent of the Poisson ratio as well as the SG-MFEM discretisation parameters. In addition, we discuss proxies for the error reduction associated with certain enrichments of the SG-MFEM spaces and we use these to develop an adaptive algorithm that terminates when the estimated error falls below a user-prescribed tolerance. We prove that both the a posteriori error estimate and the error reduction proxies are reliable and efficient in the incompressible limit case. Numerical results are presented to validate the theory. All experiments were performed using open source (IFISS) software that is available online.
We consider the nearly incompressible linear elasticity problem with an uncertain spatially varying Youngs modulus. The uncertainty is modelled with a finite set of parameters with prescribed probability distribution. We introduce a novel three-field
The paper considers a class of parametric elliptic partial differential equations (PDEs), where the coefficients and the right-hand side function depend on infinitely many (uncertain) parameters. We introduce a two-level a posteriori estimator to con
A stress equilibration procedure for linear elasticity is proposed and analyzed in this paper with emphasis on the behavior for (nearly) incompressible materials. Based on the displacement-pressure approximation computed with a stable finite element
Partial differential equations (PDEs) with inputs that depend on infinitely many parameters pose serious theoretical and computational challenges. Sophisticated numerical algorithms that automatically determine which parameters need to be activated i
This paper is concerned with the analysis and implementation of robust finite element approximation methods for mixed formulations of linear elasticity problems where the elastic solid is almost incompressible. Several novel a posteriori error estima