ﻻ يوجد ملخص باللغة العربية
This paper presents an extended Galerkin analysis for various Galerkin methods of the linear elasticity problem. The analysis is based on a unified Galerkin discretization formulation for the linear elasticity problem consisting of four discretization variables: strong symmetric stress tensor $boldsymbol sigma_h$, displacement $u_h$ inside each element and the modifications of these two variables $check boldsymbol sigma_h$ and $check u_h$ on elementary boundaries. Motivated by many relevant methods in literature, this formulation can be used to derive most existing discontinuous, nonconforming and conforming Galerkin methods for linear elasticity problem and especially to develop a number of new discontinuous Galerkin methods. Many special cases of this four-field formulation are proved to be hybridizable and can be reduced to some known hybridizable discontinuous Galerkin, weak Galerkin and local discontinuous Galerkin methods by eliminating one or two of the four fields. As certain stabilization parameter tends to infinity, this four-field formulation is proved to converge to some conforming and nonconforming mixed methods for linear elasticity problem. Two families of inf-sup conditions, one known as $H^1$-philic and another known as H(div)-phillic, are proved to be uniformly valid with respect to different choices of discrete spaces and parameters. These inf-sup conditions guarantee the well-posedness of the new proposed formulations and also offer a new and unified analysis for many existing methods in literature as a by-product.
A stress equilibration procedure for linear elasticity is proposed and analyzed in this paper with emphasis on the behavior for (nearly) incompressible materials. Based on the displacement-pressure approximation computed with a stable finite element
A general analysis framework is presented in this paper for many different types of finite element methods (including various discontinuous Galerkin methods). For second order elliptic equation, this framework employs $4$ different discretization var
An interface/boundary-unfitted eXtended hybridizable discontinuous Galerkin (X-HDG) method of arbitrary order is proposed for linear elasticity interface problems on unfitted meshes with respect to the interface and domain boundary. The method uses p
For the Hodge--Laplace equation in finite element exterior calculus, we introduce several families of discontinuous Galerkin methods in the extended Galerkin framework. For contractible domains, this framework utilizes seven fields and provides a uni
Linear poroelasticity models have a number of important applications in biology and geophysics. In particular, Biots consolidation model is a well-known model that describes the coupled interaction between the linear response of a porous elastic medi