ﻻ يوجد ملخص باللغة العربية
This paper continues the investigation of the exponentially repulsive EXP pair-potential system of Paper I with a focus on isomorphs in the low-temperature gas and liquid phases. As expected from the EXP systems strong virial potential-energy correlations, the systems reduced-unit structure and dynamics are isomorph invariant to a good approximation. Three methods for generating isomorphs are compared: the small-step method that is exact in the limit of small density changes and t
The exponentially repulsive EXP pair potential defines a system of particles in terms of which simple liquids quasiuniversality may be explained [A. K. Bacher et al., Nat. Commun. 5, 5424 (2014); J. C. Dyre, J. Phys. Condens. Matter 28, 323001 (2016)
To study the possibility of a fluid-fluid phase transition, we analyze a three-dimensional soft-core isotropic potential for a one-component system. We utilize two independent numerical approaches, (i) integral equation in the hypernetted-chain appro
We study in this paper the possible existence of Roskilde-simple liquids and their isomorphs in a rough-wall nanoconfinement. Isomorphs are curves in the thermodynamic phase diagram along which structure and dynamics are invariant in suitable nondime
An iterative Monte Carlo inversion method for the calculation of particle pair potentials from given particle pair correlations is proposed in this paper. The new method, which is best referred to as Iterative Ornstein-Zernike Inversion, represents a
In a companion paper, we derived analytical expressions for the structure factor of the square-shoulder potential in a perturbative way around the high- and low-temperature regimes. Here, various physical properties of these solutions are derived. In