ترغب بنشر مسار تعليمي؟ اضغط هنا

Calculating particle pair potentials from fluid-state pair correlations: Iterative Ornstein-Zernike Inversion

228   0   0.0 ( 0 )
 نشر من قبل Marco Heinen
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Marco Heinen




اسأل ChatGPT حول البحث

An iterative Monte Carlo inversion method for the calculation of particle pair potentials from given particle pair correlations is proposed in this paper. The new method, which is best referred to as Iterative Ornstein-Zernike Inversion, represents a generalization and an improvement of the established Iterative Boltzmann Inversion technique [Reith, P{u}tz & M{u}ller-Plathe, J. Comput. Chem. 24, 1624 (2003)]. Our modification of Iterative Boltzmann Inversion consists of replacing the potential of mean force as an approximant for the pair potential with another, generally more accurate approximant that is based on a trial bridge function in the Ornstein-Zernike integral equation formalism. As an input, the new method requires the particle pair correlations both in real space and in the Fourier conjugate wavenumber space. An accelerated iteration method is included in the discussion, by which the required number of iterations can be greatly reduced below that of the simple Picard iteration that underlies most common implementations of Iterative Boltzmann Inversion. Comprehensive tests with various pair potentials show that the new method generally surpasses the Iterative Boltzmann Inversion method in terms of reliability of the numerical solution for the particle pair potential.



قيم البحث

اقرأ أيضاً

This paper continues the investigation of the exponentially repulsive EXP pair-potential system of Paper I with a focus on isomorphs in the low-temperature gas and liquid phases. As expected from the EXP systems strong virial potential-energy correla tions, the systems reduced-unit structure and dynamics are isomorph invariant to a good approximation. Three methods for generating isomorphs are compared: the small-step method that is exact in the limit of small density changes and t
The exponentially repulsive EXP pair potential defines a system of particles in terms of which simple liquids quasiuniversality may be explained [A. K. Bacher et al., Nat. Commun. 5, 5424 (2014); J. C. Dyre, J. Phys. Condens. Matter 28, 323001 (2016) ]. This paper and its companion present a detailed simulation study of the EXP system. Here we study how structure monitored via the radial distribution function and dynamics monitored via the mean-square displacement as a function of time evolve along the systems isotherms and isochores. The focus is on the gas and liquid phases, which are distinguished pragmatically by the absence or presence of a minimum in the radial distribution function above its first maximum. An NVU-based proof of quasiuniversality is presented, and quasiuniversality is illustrated by showing that the structure of the Lennard-Jones system at four selected state points is well approximated by those of EXP pair-potential systems with the same reduced diffusion constant. The companion paper studies the EXP systems isomorphs, focusing also on the gas and liquid phases.
Hubbard ladders are an important stepping stone to the physics of the two-dimensional Hubbard model. While many of their properties are accessible to numerical and analytical techniques, the question of whether weakly hole-doped Hubbard ladders are d ominated by superconducting or charge-density-wave correlations has so far eluded a definitive answer. In particular, previous numerical simulations of Hubbard ladders have seen a much faster decay of superconducting correlations than expected based on analytical arguments. We revisit this question using a state-of-the-art implementation of the density matrix renormalization group algorithm that allows us to simulate larger system sizes with higher accuracy than before. Performing careful extrapolations of the results, we obtain improved estimates for the Luttinger liquid parameter and the correlation functions at long distances. Our results confirm that, as suggested by analytical considerations, superconducting correlations become dominant in the limit of very small doping.
106 - Y. Aoun , D. Ioffe , S. Ott 2021
We report on recent results that show that the pair correlation function of systems with exponentially decaying interactions can fail to exhibit Ornstein-Zernike asymptotics at all sufficiently high temperatures and all sufficiently small densities. This turns out to be related to a lack of analyticity of the correlation length as a function of temperature and/or density and even occurs for one-dimensional systems.
We analytically calculate the spatial nonlocal pair correlation function for an interacting uniform 1D Bose gas at finite temperature and propose an experimental method to measure nonlocal correlations. Our results span six different physical realms, including the weakly and strongly interacting regimes. We show explicitly that the characteristic correlation lengths are given by one of four length scales: the thermal de Broglie wavelength, the mean interparticle separation, the healing length, or the phase coherence length. In all regimes, we identify the profound role of interactions and find that under certain conditions the pair correlation may develop a global maximum at a finite interparticle separation due to the competition between repulsive interactions and thermal effects.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا