ﻻ يوجد ملخص باللغة العربية
We study in this paper the possible existence of Roskilde-simple liquids and their isomorphs in a rough-wall nanoconfinement. Isomorphs are curves in the thermodynamic phase diagram along which structure and dynamics are invariant in suitable nondimensionalized units. Two model liquids using molecular dynamics computer simulations are considered: the single-component Lennard-Jones (LJ) liquid and the Kob-Andersen binary LJ mixture, both of which in the bulk phases are known to have isomorphs. Nanoconfinement is implemented by adopting a slit-pore geometry with fcc crystalline walls; this implies inhomogenous density profiles both parallel and perpendicular to the confining walls. Despite this fact and consistent with an earlier study [Ingebrigtsen et. al, Phys. Rev. Lett. 111, 235901 (2013)] we find that these nanoconfined liquids have isomorphs to a good approximation. More specifically, we show good scaling of inhomogenous density profiles, mean-square displacements, and higher-order structures probed using the topological cluster classification algorithm along the isomorphs. From this study, we conjecture that in experiments, Roskilde-simple liquids may exhibit isomorphs if confined in a suitable manner, for example with carbon nanotubes. Our study thus provides an alternative framework for understanding nanoconfined liquids.
This paper continues the investigation of the exponentially repulsive EXP pair-potential system of Paper I with a focus on isomorphs in the low-temperature gas and liquid phases. As expected from the EXP systems strong virial potential-energy correla
Nanoconfinement can drastically change the behavior of liquids, puzzling us with counterintuitive properties. Moreover, it is relevant in applications, including decontamination and crystallization control. It still lacks a systematic analysis for fl
We review the works devoted to third and fifth harmonic susceptibilities in glasses, namely $chi$ (3) 3 and $chi$ (5) 5. We explain why these nonlinear responses are especially well adapted to test whether or not some amorphous correlations develop u
We study a strongly interacting dense hard-sphere system confined between two parallel plates by event-driven molecular dynamics simulations to address the fundamental question of the nature of the 3D to 2D crossover. As the fluid becomes more and mo
A first-principle multiscale modeling approach is presented, which is derived from the solution of the Ornstein-Zernike equation for the coarse-grained representation of polymer liquids. The approach is analytical, and for this reason is transferable