ﻻ يوجد ملخص باللغة العربية
To study the possibility of a fluid-fluid phase transition, we analyze a three-dimensional soft-core isotropic potential for a one-component system. We utilize two independent numerical approaches, (i) integral equation in the hypernetted-chain approximation and (ii) molecular dynamics simulations, and find for both approaches a fluid-fluid phase transition as well as the conventional gas-liquid critical point. We also study the possible existence of a triple point in the supercooled fluid phase at which three phases---gas, high-density fluid, and low-density fluid---coexist.
This paper continues the investigation of the exponentially repulsive EXP pair-potential system of Paper I with a focus on isomorphs in the low-temperature gas and liquid phases. As expected from the EXP systems strong virial potential-energy correla
The exponentially repulsive EXP pair potential defines a system of particles in terms of which simple liquids quasiuniversality may be explained [A. K. Bacher et al., Nat. Commun. 5, 5424 (2014); J. C. Dyre, J. Phys. Condens. Matter 28, 323001 (2016)
A new Monte Carlo approach is proposed to investigate the fluid-solid phase transition of the polydisperse system. By using the extended ensemble, a reversible path was constructed to link the monodisperse and corresponding polydisperse system. Once
Fluctuations of the interface between coexisting colloidal fluid phases have been measured with confocal microscopy. Due to a very low surface tension, the thermal motions of the interface are so slow, that a record can be made of the positions of th
We present a theoretical study of transport properties of a liquid comprised of particles uist1:/home/sokrates/egorov/oldhome/Pap41/Submit > m abs.tex We present a theoretical study of transport properties of a liquid comprised of particles interacti