ﻻ يوجد ملخص باللغة العربية
A recent study of Mejia-Rodriguez and Trickey [Phys. Rev. A 96, 052512 (2017)] showed that the deorbitalization procedure (replacing the exact Kohn-Sham kinetic-energy density by an approximate orbital-free expression) applied to exchange-correlation functionals of the meta-generalized gradient approximation (MGGA) can lead to important changes in the results for molecular properties. For the present work, the deorbitalization of MGGA functionals is further investigated by considering various properties of solids. It is shown that depending on the MGGA, common orbital-free approximations to the kinetic-energy density can be sufficiently accurate for the lattice constant, bulk modulus, and cohesive energy. For the band gap, calculated with the modified Becke-Johnson MGGA potential, the deorbitalization has a larger impact on the results.
Kinetic energy (KE) approximations are key elements in orbital-free density functional theory. To date, the use of non-local functionals, possibly employing system dependent parameters, has been considered mandatory in order to obtain satisfactory ac
During the last few years, it has become more and more clear that functionals of the meta generalized gradient approximation (MGGA) are more accurate than GGA functionals for the geometry and energetics of electronic systems. However, MGGA functional
An alternative type of approximation for the exchange and correlation functional in density functional theory is proposed. This approximation depends on a variable $u$ that is able to detect inhomogeneities in the electron density $rho$ without using
We construct and study several semilocal density functional approximations for the positive Kohn-Sham kinetic energy density. These functionals fit the kinetic energy density of the Airy gas and they can be accurate for integrated kinetic energies of
In this chapter, we provide a review of ground-state Kohn-Sham density-functional theory of electronic systems and some of its extensions, we present exact expressions and constraints for the exchange and correlation density functionals, and we discu