ترغب بنشر مسار تعليمي؟ اضغط هنا

Review of approximations for the exchange-correlation energy in density-functional theory

127   0   0.0 ( 0 )
 نشر من قبل Julien Toulouse
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Julien Toulouse




اسأل ChatGPT حول البحث

In this chapter, we provide a review of ground-state Kohn-Sham density-functional theory of electronic systems and some of its extensions, we present exact expressions and constraints for the exchange and correlation density functionals, and we discuss the main families of approximations for the exchange-correlation energy: semilocal approximations, single-determinant hybrid approximations, multideterminant hybrid approximations, dispersion-corrected approximations, as well as orbital-dependent exchange-correlation density functionals. The chapter aims at providing both a consistent birds-eye view of the field and a detailed description of some of the most used approximations. It is intended to be readable by chemists/physicists and applied mathematicians.

قيم البحث

اقرأ أيضاً

Recently a novel approach to find approximate exchange-correlation functionals in density-functional theory (DFT) was presented (U. Mordovina et. al., JCTC 15, 5209 (2019)), which relies on approximations to the interacting wave function using densit y-matrix embedding theory (DMET). This approximate interacting wave function is constructed by using a projection determined by an iterative procedure that makes parts of the reduced density matrix of an auxiliary system the same as the approximate interacting density matrix. If only the diagonal of both systems are connected this leads to an approximation of the interacting-to-non-interacting mapping of the Kohn-Sham approach to DFT. Yet other choices are possible and allow to connect DMET with other DFTs such as kinetic-energy DFT or reduced density-matrix functional theory. In this work we give a detailed review of the basics of the DMET procedure from a DFT perspective and show how both approaches can be used to supplement each other. We do so explicitly for the case of a one-dimensional lattice system, as this is the simplest setting where we can apply DMET and the one that was originally presented. Among others we highlight how the mappings of DFTs can be used to identify uniquely defined auxiliary systems and auxiliary projections in DMET and how to construct approximations for different DFTs using DMET inspired projections. Such alternative approximation strategies become especially important for DFTs that are based on non-linearly coupled observables such as kinetic-energy DFT, where the Kohn-Sham fields are no longer simply obtainable by functional differentiation of an energy expression, or for reduced density-matrix functional theories, where a straightforward Kohn-Sham construction is not feasible.
We review and expand on our work to impose constraints on the effective Kohn Sham (KS) potential of local and semi-local density functional approximations. In this work, we relax a previously imposed positivity constraint, which increased the computa tional cost and we find that it is safe to do so, except in systems with very few electrons. The constrained minimisation leads invariably to the solution of an optimised effective potential (OEP) equation in order to determine the KS potential. We review briefly our previous work on this problem and demonstrate with numerous examples that despite well-known mathematical issues of the OEP with finite basis sets, our OEP equations are well behaved. We demonstrate that constraining the screening charge of the Hartree, exchange and correlation potential not only corrects its asymptotic behaviour but also allows the exchange and correlation potential to exhibit nonzero derivative discontinuity, a feature of the exact KS potential that is necessary for the accurate prediction of band-gaps in solids but very hard to capture with semi-local approximations.
We present the self-consistent implementation of current-dependent (hybrid) meta generalized gradient approximation (mGGA) density functionals using London atomic orbitals. A previously proposed generalized kinetic energy density is utilized to imple ment mGGAs in the framework of Kohn--Sham current density-functional theory (KS-CDFT). A unique feature of the non-perturbative implementation of these functionals is the ability to seamlessly explore a wide range of magnetic fields up to 1 a.u. ($sim 235000$T) in strength. CDFT functionals based on the TPSS and B98 forms are investigated and their performance is assessed by comparison with accurate CCSD(T) data. In the weak field regime magnetic properties such as magnetizabilities and NMR shielding constants show modest but systematic improvements over GGA functionals. However, in strong field regime the mGGA based forms lead to a significantly improved description of the recently proposed perpendicular paramagnetic bonding mechanism, comparing well with CCSD(T) data. In contrast to functionals based on the vorticity these forms are found to be numerically stable and their accuracy at high field suggests the extension of mGGAs to CDFT via the generalized kinetic energy density should provide a useful starting point for further development of CDFT approximations.
We train a neural network as the universal exchange-correlation functional of density-functional theory that simultaneously reproduces both the exact exchange-correlation energy and potential. This functional is extremely non-local, but retains the c omputational scaling of traditional local or semi-local approximations. It therefore holds the promise of solving some of the delocalization problems that plague density-functional theory, while maintaining the computational efficiency that characterizes the Kohn-Sham equations. Furthermore, by using automatic differentiation, a capability present in modern machine-learning frameworks, we impose the exact mathematical relation between the exchange-correlation energy and the potential, leading to a fully consistent method. We demonstrate the feasibility of our approach by looking at one-dimensional systems with two strongly-correlated electrons, where density-functional methods are known to fail, and investigate the behavior and performance of our functional by varying the degree of non-locality.
We construct a density-functional formalism adapted to uniform external magnetic fields that is intermediate between conventional Density Functional Theory and Current-Density Functional Theory (CDFT). In the intermediate theory, which we term LDFT, the basic variables are the density, the canonical momentum, and the paramagnetic contribution to the magnetic moment. Both a constrained-search formulation and a convex formulation in terms of Legendre--Fenchel transformations are constructed. Many theoretical issues in CDFT find simplified analogues in LDFT. We prove results concerning $N$-representability, Hohenberg--Kohn-like mappings, existence of minimizers in the constrained-search expression, and a restricted analogue to gauge invariance. The issue of additivity of the energy over non-interacting subsystems, which is qualitatively different in LDFT and CDFT, is also discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا