ﻻ يوجد ملخص باللغة العربية
Kinetic energy (KE) approximations are key elements in orbital-free density functional theory. To date, the use of non-local functionals, possibly employing system dependent parameters, has been considered mandatory in order to obtain satisfactory accuracy for different solid-state systems, whereas semilocal approximations are generally regarded as unfit to this aim. Here, we show that instead properly constructed semilocal approximations, the Pauli-Gaussian (PG) KE functionals, especially at the Laplacian-level of theory, can indeed achieve similar accuracy as non-local functionals and can be accurate for both metals and semiconductors, without the need of system-dependent parameters.
A recent study of Mejia-Rodriguez and Trickey [Phys. Rev. A 96, 052512 (2017)] showed that the deorbitalization procedure (replacing the exact Kohn-Sham kinetic-energy density by an approximate orbital-free expression) applied to exchange-correlation
We assess the validity of various exchange-correlation functionals for computing the structural, vibrational, dielectric, and thermodynamical properties of materials in the framework of density-functional perturbation theory (DFPT). We consider five
Time-dependent orbital-free density functional theory (TD-OFDFT) is an efficient ab-initio method for calculating the electronic dynamics of large systems. In comparison to standard TD-DFT, it computes only a single electronic state regardless of sys
Time-dependent orbital-free DFT is an efficient method for calculating the dynamic properties of large scale quantum systems due to the low computational cost compared to standard time-dependent DFT. We formalize this method by mapping the real syste
Semilocal density functional theory is the most used computational method for electronic structure calculations in theoretical solid-state physics and quantum chemistry of large systems, providing good accuracy with a very attractive computational co