ﻻ يوجد ملخص باللغة العربية
We construct and study several semilocal density functional approximations for the positive Kohn-Sham kinetic energy density. These functionals fit the kinetic energy density of the Airy gas and they can be accurate for integrated kinetic energies of atoms, molecules, jellium clusters and jellium surfaces. We find that these functionals are the most accurate ones for atomization kinetic energies of molecules and for fragmentation of jellium clusters. We also report that local and semilocal kinetic energy functionals can show binding when the density of a spin unrestricted Kohn-Sham calculation is used.
A recent study of Mejia-Rodriguez and Trickey [Phys. Rev. A 96, 052512 (2017)] showed that the deorbitalization procedure (replacing the exact Kohn-Sham kinetic-energy density by an approximate orbital-free expression) applied to exchange-correlation
Kinetic energy (KE) approximations are key elements in orbital-free density functional theory. To date, the use of non-local functionals, possibly employing system dependent parameters, has been considered mandatory in order to obtain satisfactory ac
In this paper, we introduce a novel solution to the covariant Landau equation for a pure electron plasma. The method conserves energy and particle number, and reduces smoothly to the Rosenbluth potentials of non-relativistic theory. In addition, we f
The Airy gas model of the edge electron gas is used to construct an exchange-energy functional which is an alternative to those obtained in the local density and generalized gradient approximations. Test calculations for rare gas atoms, molecules, so
The development of semilocal models for the kinetic energy density (KED) is an important topic in density functional theory (DFT). This is especially true for subsystem DFT, where these models are necessary to construct the required non-additive embe