ترغب بنشر مسار تعليمي؟ اضغط هنا

ActiveStereoNet: End-to-End Self-Supervised Learning for Active Stereo Systems

106   0   0.0 ( 0 )
 نشر من قبل Yinda Zhang
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper we present ActiveStereoNet, the first deep learning solution for active stereo systems. Due to the lack of ground truth, our method is fully self-supervised, yet it produces precise depth with a subpixel precision of $1/30th$ of a pixel; it does not suffer from the common over-smoothing issues; it preserves the edges; and it explicitly handles occlusions. We introduce a novel reconstruction loss that is more robust to noise and texture-less patches, and is invariant to illumination changes. The proposed loss is optimized using a window-based cost aggregation with an adaptive support weight scheme. This cost aggregation is edge-preserving and smooths the loss function, which is key to allow the network to reach compelling results. Finally we show how the task of predicting invalid regions, such as occlusions, can be trained end-to-end without ground-truth. This component is crucial to reduce blur and particularly improves predictions along depth discontinuities. Extensive quantitatively and qualitatively evaluations on real and synthetic data demonstrate state of the art results in many challenging scenes.



قيم البحث

اقرأ أيضاً

89 - Hengli Wang , Rui Fan , Peide Cai 2021
Supervised learning with deep convolutional neural networks (DCNNs) has seen huge adoption in stereo matching. However, the acquisition of large-scale datasets with well-labeled ground truth is cumbersome and labor-intensive, making supervised learni ng-based approaches often hard to implement in practice. To overcome this drawback, we propose a robust and effective self-supervised stereo matching approach, consisting of a pyramid voting module (PVM) and a novel DCNN architecture, referred to as OptStereo. Specifically, our OptStereo first builds multi-scale cost volumes, and then adopts a recurrent unit to iteratively update disparity estimations at high resolution; while our PVM can generate reliable semi-dense disparity images, which can be employed to supervise OptStereo training. Furthermore, we publish the HKUST-Drive dataset, a large-scale synthetic stereo dataset, collected under different illumination and weather conditions for research purposes. Extensive experimental results demonstrate the effectiveness and efficiency of our self-supervised stereo matching approach on the KITTI Stereo benchmarks and our HKUST-Drive dataset. PVStereo, our best-performing implementation, greatly outperforms all other state-of-the-art self-supervised stereo matching approaches. Our project page is available at sites.google.com/view/pvstereo.
The world is covered with millions of buildings, and precisely knowing each instances position and extents is vital to a multitude of applications. Recently, automated building footprint segmentation models have shown superior detection accuracy than ks to the usage of Convolutional Neural Networks (CNN). However, even the latest evolutions struggle to precisely delineating borders, which often leads to geometric distortions and inadvertent fusion of adjacent building instances. We propose to overcome this issue by exploiting the distinct geometric properties of buildings. To this end, we present Deep Structured Active Contours (DSAC), a novel framework that integrates priors and constraints into the segmentation process, such as continuous boundaries, smooth edges, and sharp corners. To do so, DSAC employs Active Contour Models (ACM), a family of constraint- and prior-based polygonal models. We learn ACM parameterizations per instance using a CNN, and show how to incorporate all components in a structured output model, making DSAC trainable end-to-end. We evaluate DSAC on three challenging building instance segmentation datasets, where it compares favorably against state-of-the-art. Code will be made available.
Weakly supervised object detection (WSOD), which is the problem of learning detectors using only image-level labels, has been attracting more and more interest. However, this problem is quite challenging due to the lack of location supervision. To ad dress this issue, this paper integrates saliency into a deep architecture, in which the location in- formation is explored both explicitly and implicitly. Specifically, we select highly confident object pro- posals under the guidance of class-specific saliency maps. The location information, together with semantic and saliency information, of the selected proposals are then used to explicitly supervise the network by imposing two additional losses. Meanwhile, a saliency prediction sub-network is built in the architecture. The prediction results are used to implicitly guide the localization procedure. The entire network is trained end-to-end. Experiments on PASCAL VOC demonstrate that our approach outperforms all state-of-the-arts.
Accurate layout estimation is crucial for planning and navigation in robotics applications, such as self-driving. In this paper, we introduce the Stereo Birds Eye ViewNetwork (SBEVNet), a novel supervised end-to-end framework for estimation of birds eye view layout from a pair of stereo images. Although our network reuses some of the building blocks from the state-of-the-art deep learning networks for disparity estimation, we show that explicit depth estimation is neither sufficient nor necessary. Instead, the learning of a good internal birds eye view feature representation is effective for layout estimation. Specifically, we first generate a disparity feature volume using the features of the stereo images and then project it to the birds eye view coordinates. This gives us coarse-grained information about the scene structure. We also apply inverse perspective mapping (IPM) to map the input images and their features to the birds eye view. This gives us fine-grained texture information. Concatenating IPM features with the projected feature volume creates a rich birds eye view representation which is useful for spatial reasoning. We use this representation to estimate the BEV semantic map. Additionally, we show that using the IPM features as a supervisory signal for stereo features can give an improvement in performance. We demonstrate our approach on two datasets:the KITTI dataset and a synthetically generated dataset from the CARLA simulator. For both of these datasets, we establish state-of-the-art performance compared to baseline techniques.
We introduce Ignition: an end-to-end neural network architecture for training unconstrained self-driving vehicles in simulated environments. The model is a ResNet-18 variant, which is fed in images from the front of a simulated F1 car, and outputs op timal labels for steering, throttle, braking. Importantly, we never explicitly train the model to detect road features like the outline of a track or distance to other cars; instead, we illustrate that these latent features can be automatically encapsulated by the network.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا