ﻻ يوجد ملخص باللغة العربية
Supervised learning with deep convolutional neural networks (DCNNs) has seen huge adoption in stereo matching. However, the acquisition of large-scale datasets with well-labeled ground truth is cumbersome and labor-intensive, making supervised learning-based approaches often hard to implement in practice. To overcome this drawback, we propose a robust and effective self-supervised stereo matching approach, consisting of a pyramid voting module (PVM) and a novel DCNN architecture, referred to as OptStereo. Specifically, our OptStereo first builds multi-scale cost volumes, and then adopts a recurrent unit to iteratively update disparity estimations at high resolution; while our PVM can generate reliable semi-dense disparity images, which can be employed to supervise OptStereo training. Furthermore, we publish the HKUST-Drive dataset, a large-scale synthetic stereo dataset, collected under different illumination and weather conditions for research purposes. Extensive experimental results demonstrate the effectiveness and efficiency of our self-supervised stereo matching approach on the KITTI Stereo benchmarks and our HKUST-Drive dataset. PVStereo, our best-performing implementation, greatly outperforms all other state-of-the-art self-supervised stereo matching approaches. Our project page is available at sites.google.com/view/pvstereo.
In this paper we present ActiveStereoNet, the first deep learning solution for active stereo systems. Due to the lack of ground truth, our method is fully self-supervised, yet it produces precise depth with a subpixel precision of $1/30th$ of a pixel
The crucial step for localization is to match the current observation to the map. When the two sensor modalities are significantly different, matching becomes challenging. In this paper, we present an end-to-end deep phase correlation network (DPCN)
Accurate layout estimation is crucial for planning and navigation in robotics applications, such as self-driving. In this paper, we introduce the Stereo Birds Eye ViewNetwork (SBEVNet), a novel supervised end-to-end framework for estimation of birds
We introduce Ignition: an end-to-end neural network architecture for training unconstrained self-driving vehicles in simulated environments. The model is a ResNet-18 variant, which is fed in images from the front of a simulated F1 car, and outputs op
Recent years, human-object interaction (HOI) detection has achieved impressive advances. However, conventional two-stage methods are usually slow in inference. On the other hand, existing one-stage methods mainly focus on the union regions of interac