ترغب بنشر مسار تعليمي؟ اضغط هنا

Saliency Guided End-to-End Learning for Weakly Supervised Object Detection

100   0   0.0 ( 0 )
 نشر من قبل Baisheng Lai
 تاريخ النشر 2017
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Weakly supervised object detection (WSOD), which is the problem of learning detectors using only image-level labels, has been attracting more and more interest. However, this problem is quite challenging due to the lack of location supervision. To address this issue, this paper integrates saliency into a deep architecture, in which the location in- formation is explored both explicitly and implicitly. Specifically, we select highly confident object pro- posals under the guidance of class-specific saliency maps. The location information, together with semantic and saliency information, of the selected proposals are then used to explicitly supervise the network by imposing two additional losses. Meanwhile, a saliency prediction sub-network is built in the architecture. The prediction results are used to implicitly guide the localization procedure. The entire network is trained end-to-end. Experiments on PASCAL VOC demonstrate that our approach outperforms all state-of-the-arts.

قيم البحث

اقرأ أيضاً

335 - Mengde Xu , Zheng Zhang , Han Hu 2021
This paper presents an end-to-end semi-supervised object detection approach, in contrast to previous more complex multi-stage methods. The end-to-end training gradually improves pseudo label qualities during the curriculum, and the more and more accu rate pseudo labels in turn benefit object detection training. We also propose two simple yet effective techniques within this framework: a soft teacher mechanism where the classification loss of each unlabeled bounding box is weighed by the classification score produced by the teacher network; a box jittering approach to select reliable pseudo boxes for the learning of box regression. On the COCO benchmark, the proposed approach outperforms previous methods by a large margin under various labeling ratios, i.e. 1%, 5% and 10%. Moreover, our approach proves to perform also well when the amount of labeled data is relatively large. For example, it can improve a 40.9 mAP baseline detector trained using the full COCO training set by +3.6 mAP, reaching 44.5 mAP, by leveraging the 123K unlabeled images of COCO. On the state-of-the-art Swin Transformer based object detector (58.9 mAP on test-dev), it can still significantly improve the detection accuracy by +1.5 mAP, reaching 60.4 mAP, and improve the instance segmentation accuracy by +1.2 mAP, reaching 52.4 mAP. Further incorporating with the Object365 pre-trained model, the detection accuracy reaches 61.3 mAP and the instance segmentation accuracy reaches 53.0 mAP, pushing the new state-of-the-art.
Supervised learning based object detection frameworks demand plenty of laborious manual annotations, which may not be practical in real applications. Semi-supervised object detection (SSOD) can effectively leverage unlabeled data to improve the model performance, which is of great significance for the application of object detection models. In this paper, we revisit SSOD and propose Instant-Teaching, a completely end-to-end and effective SSOD framework, which uses instant pseudo labeling with extended weak-strong data augmentations for teaching during each training iteration. To alleviate the confirmation bias problem and improve the quality of pseudo annotations, we further propose a co-rectify scheme based on Instant-Teaching, denoted as Instant-Teaching$^*$. Extensive experiments on both MS-COCO and PASCAL VOC datasets substantiate the superiority of our framework. Specifically, our method surpasses state-of-the-art methods by 4.2 mAP on MS-COCO when using $2%$ labeled data. Even with full supervised information of MS-COCO, the proposed method still outperforms state-of-the-art methods by about 1.0 mAP. On PASCAL VOC, we can achieve more than 5 mAP improvement by applying VOC07 as labeled data and VOC12 as unlabeled data.
Salient object detection aims at detecting the most visually distinct objects and producing the corresponding masks. As the cost of pixel-level annotations is high, image tags are usually used as weak supervisions. However, an image tag can only be u sed to annotate one class of objects. In this paper, we introduce saliency subitizing as the weak supervision since it is class-agnostic. This allows the supervision to be aligned with the property of saliency detection, where the salient objects of an image could be from more than one class. To this end, we propose a model with two modules, Saliency Subitizing Module (SSM) and Saliency Updating Module (SUM). While SSM learns to generate the initial saliency masks using the subitizing information, without the need for any unsupervised methods or some random seeds, SUM helps iteratively refine the generated saliency masks. We conduct extensive experiments on five benchmark datasets. The experimental results show that our method outperforms other weakly-supervised methods and even performs comparably to some fully-supervised methods.
202 - Peize Sun , Yi Jiang , Enze Xie 2020
Object detection has recently achieved a breakthrough for removing the last one non-differentiable component in the pipeline, Non-Maximum Suppression (NMS), and building up an end-to-end system. However, what makes for its one-to-one prediction has n ot been well understood. In this paper, we first point out that one-to-one positive sample assignment is the key factor, while, one-to-many assignment in previous detectors causes redundant predictions in inference. Second, we surprisingly find that even training with one-to-one assignment, previous detectors still produce redundant predictions. We identify that classification cost in matching cost is the main ingredient: (1) previous detectors only consider location cost, (2) by additionally introducing classification cost, previous detectors immediately produce one-to-one prediction during inference. We introduce the concept of score gap to explore the effect of matching cost. Classification cost enlarges the score gap by choosing positive samples as those of highest score in the training iteration and reducing noisy positive samples brought by only location cost. Finally, we demonstrate the advantages of end-to-end object detection on crowded scenes. The code is available at: url{https://github.com/PeizeSun/OneNet}.
We present a new method that views object detection as a direct set prediction problem. Our approach streamlines the detection pipeline, effectively removing the need for many hand-designed components like a non-maximum suppression procedure or ancho r generation that explicitly encode our prior knowledge about the task. The main ingredients of the new framework, called DEtection TRansformer or DETR, are a set-based global loss that forces unique predictions via bipartite matching, and a transformer encoder-decoder architecture. Given a fixed small set of learned object queries, DETR reasons about the relations of the objects and the global image context to directly output the final set of predictions in parallel. The new model is conceptually simple and does not require a specialized library, unlike many other modern detectors. DETR demonstrates accuracy and run-time performance on par with the well-established and highly-optimized Faster RCNN baseline on the challenging COCO object detection dataset. Moreover, DETR can be easily generalized to produce panoptic segmentation in a unified manner. We show that it significantly outperforms competitive baselines. Training code and pretrained models are available at https://github.com/facebookresearch/detr.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا