ترغب بنشر مسار تعليمي؟ اضغط هنا

Neutral versus ionized gas kinematics at z~2.6: The AGN-host starburst galaxy PKS 0529-549

90   0   0.0 ( 0 )
 نشر من قبل Federico Lelli
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a multiwavelength study of the AGN-host starburst galaxy PKS 0529-549 at z~2.6. We use (1) new ALMA observations of the dust continuum and of the [CI] 370 um line, tracing molecular gas, (2) SINFONI spectroscopy of the [OIII] 5007 Ang line, tracing ionized gas, and (3) ATCA radio continuum images, tracing synchrotron emission. Both [CI] and [OIII] show regular velocity gradients, but their systemic velocities and position angles differ by ~300 km/s and ~30 degrees, respectively. The [CI] is consistent with a rotating disc, aligned with the dust and stellar continuum, while the [OIII] likely traces an outflow, aligned with two AGN-driven radio lobes. We model the [CI] cube using 3D disc models, which give best-fit rotation velocities V~310 km/s and velocity dispersions sigma<30 km/s. Hence, the [CI] disc has V/sigma>10 and is not particularly turbulent, similar to local galaxy discs. The dynamical mass (~10^11 Msun) is comparable to the baryonic mass within the errors. This suggests that baryons dominate the inner galaxy dynamics, similar to massive galaxies at z=0. Remarkably, PKS 0529-549 lies on the local baryonic Tully-Fisher relation, indicating that at least some massive galaxies are already in place and kinematically relaxed at z~2.6. This work highlights the potential of the [CI] line to trace galaxy dynamics at high z, as well as the importance of multiwavelength data to interpret gas kinematics.



قيم البحث

اقرأ أيضاً

The SINFONI survey for Unveiling the Physics and Effect of Radiative feedback (SUPER) aims at tracing and characterizing ionized gas outflows and their impact on star formation in a statistical sample of X-ray selected Active Galactic Nuclei (AGN) at z$sim$2. We present the first SINFONI results for a sample of 21 Type-1 AGN spanning a wide range in bolometric luminosity (log $mathrm{L_{bol}}$ = 45.4-47.9 erg/s). The main aims of this paper are determining the extension of the ionized gas, characterizing the occurrence of AGN-driven outflows, and linking the properties of such outflows with those of the AGN. We use Adaptive Optics-assisted SINFONI observations to trace ionized gas in the extended narrow line region using the [OIII]5007 line. We classify a target as hosting an outflow if its non-parametric velocity of the [OIII] line, $mathrm{w_{80}}$, is larger than 600 km/s. We study the presence of extended emission using dedicated point-spread function (PSF) observations, after modelling the PSF from the Balmer lines originating from the Broad Line Region. We detect outflows in all the Type-1 AGN sample based on the $mathrm{w_{80}}$ value from the integrated spectrum, which is in the range 650-2700 km/s. There is a clear positive correlation between $mathrm{w_{80}}$ and the AGN bolometric luminosity (99% correlation probability), but a weaker correlation with the black hole mass (80% correlation probability). A comparison of the PSF and the [OIII] radial profile shows that the [OIII] emission is spatially resolved for $sim$35% of the Type-1 sample and the outflows show an extension up to $sim$6 kpc. The relation between maximum velocity and the bolometric luminosity is consistent with model predictions for shocks from an AGN driven outflow. The escape fraction of the outflowing gas increase with the AGN luminosity, although for most galaxies, this fraction is less than 10%.
Understanding the relationship between the formation and evolution of galaxies and their central super massive black holes (SMBH) is one of the main topics in extragalactic astrophysics. Links and feedback may reciprocally affect both black hole and galaxy growth. Observations of the CO line at redshifts of 2-4 are crucial to investigate the gas mass, star formation activity and accretion onto SMBHs, as well as the effect of AGN feedback. Potential correlations between AGN and host galaxy properties can be highlighted by observing extreme objects. Despite their luminosity, hyper-luminous QSOs at z=2-4 are still little studied at mm wavelengths. We targeted CO(3-2) in ULAS J1539+0557, an hyper-luminos QSO (Lbol> 10^48 erg/s) at z=2.658, selected through its unusual red colors in the UKIDSS Large Area Survey (ULAS). We find a molecular gas mass of 4.1+-0.8 10^10 Msun, and a gas fraction of 0.4-0.1, depending mostly on the assumed source inclination. We also find a robust lower limit to the star-formation rate (SFR=250-1600 Msun/yr) and star-formation efficiency (SFE=25-350 Lsun/(K km s-1 pc2) by comparing the observed optical-near-infrared spectral energy distribution with AGN and galaxy templates. The black hole gas consumption timescale, M(H_2)/dM(accretion)/dt, is ~160 Myr, similar or higher than the gas consumption timescale. The gas content and the star formation efficiency are similar to those of other high-luminosity, highly obscured QSOs, and at the lower end of the star-formation efficiency of unobscured QSOs, in line with predictions from AGN-galaxy co-evolutionary scenarios. Further measurements of the (sub)-mm continuum in this and similar sources are mandatory to obtain a robust observational picture of the AGN evolutionary sequence.
143 - James Aird , Alison L. Coil 2020
It is widely reported, based on clustering measurements of observed active galactic nuclei (AGN) samples, that AGN reside in similar mass host dark matter halos across the bulk of cosmic time, with log $M/M_odot$~12.5-13.0 to z~2.5. We show that this is due in part to the AGN fraction in galaxies rising with increasing stellar mass, combined with AGN observational selection effects that exacerbate this trend. Here, we use AGN specific accretion rate distribution functions determined as a function of stellar mass and redshift for star-forming and quiescent galaxies separately, combined with the latest galaxy-halo connection models, to determine the parent and sub-halo mass distribution function of AGN to various observational limits. We find that while the median (sub-)halo mass of AGN, $approx10^{12}M_odot$, is fairly constant with luminosity, specific accretion rate, and redshift, the full halo mass distribution function is broad, spanning several orders of magnitude. We show that widely used methods to infer a typical dark matter halo mass based on an observed AGN clustering amplitude can result in biased, systematically high host halo masses. While the AGN satellite fraction rises with increasing parent halo mass, we find that the central galaxy is often not an AGN. Our results elucidate the physical causes for the apparent uniformity of AGN host halos across cosmic time and underscore the importance of accounting for AGN selection biases when interpreting observational AGN clustering results. We further show that AGN clustering is most easily interpreted in terms of the relative bias to galaxy samples, not from absolute bias measurements alone.
We present a new study of archival ALMA observations of the CO(2-1) line emission of the host galaxy of quasar RX J1131 at redshift $z$=0.654, lensed by a foreground galaxy. A simple lens model is shown to well reproduce the optical images obtained b y the Hubble Space Telescope. Clear evidence for rotation of the gas contained in the galaxy is obtained and a simple rotating disc model is shown to give an excellent overall description of the morpho-kinematics of the source. The possible presence of a companion galaxy suggested by some previous authors is not confirmed. Detailed comparison between model and observations gives evidence for a more complex dynamics than implied by the model. Doppler velocity dispersion within the beam size in the image plane is found to account for the observed line width.
We present deep observations of a $z=1.4$ massive, star-forming galaxy in molecular and ionized gas at comparable spatial resolution (CO 3-2, NOEMA; H$alpha$, LBT). The kinematic tracers agree well, indicating that both gas phases are subject to the same gravitational potential and physical processes affecting the gas dynamics. We combine the one-dimensional velocity and velocity dispersion profiles in CO and H$alpha$ to forward-model the galaxy in a Bayesian framework, combining a thick exponential disk, a bulge, and a dark matter halo. We determine the dynamical support due to baryons and dark matter, and find a dark matter fraction within one effective radius of $f_{rm DM}(leq$$R_{e})=0.18^{+0.06}_{-0.04}$. Our result strengthens the evidence for strong baryon-dominance on galactic scales of massive $zsim1-3$ star-forming galaxies recently found based on ionized gas kinematics alone.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا