ترغب بنشر مسار تعليمي؟ اضغط هنا

Morpho-kinematics of the molecular gas in a quasar host galaxy at redshift $z$=0.654

84   0   0.0 ( 0 )
 نشر من قبل Pham Tuan-Anh
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a new study of archival ALMA observations of the CO(2-1) line emission of the host galaxy of quasar RX J1131 at redshift $z$=0.654, lensed by a foreground galaxy. A simple lens model is shown to well reproduce the optical images obtained by the Hubble Space Telescope. Clear evidence for rotation of the gas contained in the galaxy is obtained and a simple rotating disc model is shown to give an excellent overall description of the morpho-kinematics of the source. The possible presence of a companion galaxy suggested by some previous authors is not confirmed. Detailed comparison between model and observations gives evidence for a more complex dynamics than implied by the model. Doppler velocity dispersion within the beam size in the image plane is found to account for the observed line width.



قيم البحث

اقرأ أيضاً

139 - Fabian Walter 2003
Observations of the molecular gas phase in quasar host galaxies provide fundamental constraints on galaxy evolution at the highest redshifts. Molecular gas is the material out of which stars form; it can be traced by spectral line emission of carbon- -monoxide (CO). To date, CO emission has been detected in more than a dozen quasar host galaxies with redshifts (z) larger 2, the record holder being at z=4.69. At these distances the CO lines are shifted to longer wavelengths, enabling their observation with sensitive radio and millimetre interferometers. Here we present the discovery of CO emission toward the quasar SDSS J114816.64+525150.3 (hereafter J1148+5251) at a redshift of z=6.42, when the universe was only 1/16 of its present age. This is the first detection of molecular gas at the end of cosmic reionization. The presence of large amounts of molecular gas (M(H_2)=2.2e10 M_sun) in an object at this time demonstrates that heavy element enriched molecular gas can be generated rapidly in the earliest galaxies.
We present high-resolution VLA observations of the molecular gas in the host galaxy of the highest redshift quasar currently known, SDSS J1148+5251 (z=6.42). Our VLA data of the CO(3-2) emission have a maximum resolution of 0.17 x 0.13 (~1 kpc), and enable us to resolve the molecular gas emission both spatially and in velocity. The molecular gas in J1148+5251 is extended to a radius of 2.5 kpc, and the central region shows 2 peaks, separated by 0.3 (1.7 kpc). These peaks account for about half of the total emission, while the remainder is more extended. Each of these unresolved peaks contains a molecular gas mass of ~5 x 10^9 M_sun (similar to the total mass found in nearby ULIRGS) and has an intrinsic brightness temperature of ~35 K (averaged over the 1 kpc-sized beam), comparable to what is found in nearby starburst centers. Assuming that the molecular gas is gravitationally bound, we estimate a dynamical mass of ~4.5 x 10^10 M_sun within a radius of 2.5 kpc (~5.5 x 10^10 M_sun if corrected for a derived inclination of i~65 deg.). This dynamical mass estimate leaves little room for matter other than the detected molecular gas, and in particular the data are inconsistent with a ~10^12 M_sun stellar bulge which would be predicted based on the M_BH-sigma_bulge relation. This finding may indicate that black holes form prior to the assembly of the stellar bulges and that the dark matter halos are less massive than predicted based on the black hole/bulge mass relationship.
We explore the kinematics of 27 z~6 quasar host galaxies observed in [CII]-158 micron ([CII]) emission with the Atacama Large Millimeter/sub-millimeter Array at a resolution of ~0.25. We find that nine of the galaxies show disturbed [CII] emission, e ither due to a close companion galaxy or recent merger. Ten galaxies have smooth velocity gradients consistent with the emission arising from a gaseous disk. The remaining eight quasar host galaxies show no velocity gradient, suggesting that the gas in these systems is dispersion-dominated. All galaxies show high velocity dispersions with a mean of 129+-10 km/s. To provide an estimate of the dynamical mass within twice the half-light radius of the quasar host galaxy, we model the kinematics of the [CII] emission line using our publicly available kinematic fitting code, qubefit. This results in a mean dynamical mass of 5.0+-0.8(+-3.5) x 10^10 Msun. Comparison between the dynamical mass and the mass of the supermassive black hole reveals that the sample falls above the locally derived bulge mass--black hole mass relation at 2.4sigma significance. This result is robust even if we account for the large systematic uncertainties. Using several different estimators for the molecular mass, we estimate a gas mass fraction of >10%, indicating gas makes up a large fraction of the baryonic mass of z~6 quasar host galaxies. Finally, we speculate that the large variety in [CII] kinematics is an indication that gas accretion onto z~6 super massive black holes is not caused by a single precipitating factor.
164 - A. Humphrey 2015
A significant minority of high redshift radio galaxy (HzRG) candidates show extremely red broad band colours and remain undetected in emission lines after optical `discovery spectroscopy. In this paper we present deep GTC optical imaging and spectros copy of one such radio galaxy, 5C 7.245, with the aim of better understanding the nature of these enigmatic objects. Our g-band image shows no significant emission coincident with the stellar emission of the host galaxy, but does reveal faint emission offset by ~3 (26 kpc) therefrom along a similar position angle to that of the radio jets, reminiscent of the `alignment effect often seen in the optically luminous HzRGs. This offset g-band source is also detected in several UV emission lines, giving it a redshift of 1.609, with emission line flux ratios inconsistent with photoionization by young stars or an AGN, but consistent with ionization by fast shocks. Based on its unusual gas geometry, we argue that in 5C 7.245 we are witnessing a rare (or rarely observed) phase in the evolution of quasar hosts when stellar mass assembly, accretion onto the back hole, and powerful feedback activity has eradicated its cold gas from the central ~20 kpc, but is still in the process of cleansing cold gas from its extended halo.
We present IRAM/NOEMA and JVLA observations of the quasar J1342+0928 at z=7.54 and report detections of copious amounts of dust and [CII] emission in the interstellar medium (ISM) of its host galaxy. At this redshift, the age of the universe is 690 M yr, about 10% younger than the redshift of the previous quasar record holder. Yet, the ISM of this new quasar host galaxy is significantly enriched by metals, as evidenced by the detection of the [CII] 158micron cooling line and the underlying far-infrared (FIR) dust continuum emission. To the first order, the FIR properties of this quasar host are similar to those found at a slightly lower redshift (z~6), making this source by far the FIR-brightest galaxy known at z>7.5. The [CII] emission is spatially unresolved, with an upper limit on the diameter of 7 kpc. Together with the measured FWHM of the [CII] line, this yields a dynamical mass of the host of <1.5x10^11 M_sun. Using standard assumptions about the dust temperature and emissivity, the NOEMA measurements give a dust mass of (0.6-4.3)x10^8 M_sun. The brightness of the [CII] luminosity, together with the high dust mass, imply active ongoing star formation in the quasar host. Using [CII]-SFR scaling relations, we derive star formation rates of 85-545 M_sun/yr in the host, consistent with the values derived from the dust continuum. Indeed, an episode of such past high star formation is needed to explain the presence of ~10^8 M_sun of dust implied by the observations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا