ترغب بنشر مسار تعليمي؟ اضغط هنا

SUPER-II: Spatially resolved ionized gas kinematics and scaling relations in z~2 AGN host galaxies

68   0   0.0 ( 0 )
 نشر من قبل Darshan Kakkad
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The SINFONI survey for Unveiling the Physics and Effect of Radiative feedback (SUPER) aims at tracing and characterizing ionized gas outflows and their impact on star formation in a statistical sample of X-ray selected Active Galactic Nuclei (AGN) at z$sim$2. We present the first SINFONI results for a sample of 21 Type-1 AGN spanning a wide range in bolometric luminosity (log $mathrm{L_{bol}}$ = 45.4-47.9 erg/s). The main aims of this paper are determining the extension of the ionized gas, characterizing the occurrence of AGN-driven outflows, and linking the properties of such outflows with those of the AGN. We use Adaptive Optics-assisted SINFONI observations to trace ionized gas in the extended narrow line region using the [OIII]5007 line. We classify a target as hosting an outflow if its non-parametric velocity of the [OIII] line, $mathrm{w_{80}}$, is larger than 600 km/s. We study the presence of extended emission using dedicated point-spread function (PSF) observations, after modelling the PSF from the Balmer lines originating from the Broad Line Region. We detect outflows in all the Type-1 AGN sample based on the $mathrm{w_{80}}$ value from the integrated spectrum, which is in the range 650-2700 km/s. There is a clear positive correlation between $mathrm{w_{80}}$ and the AGN bolometric luminosity (99% correlation probability), but a weaker correlation with the black hole mass (80% correlation probability). A comparison of the PSF and the [OIII] radial profile shows that the [OIII] emission is spatially resolved for $sim$35% of the Type-1 sample and the outflows show an extension up to $sim$6 kpc. The relation between maximum velocity and the bolometric luminosity is consistent with model predictions for shocks from an AGN driven outflow. The escape fraction of the outflowing gas increase with the AGN luminosity, although for most galaxies, this fraction is less than 10%.


قيم البحث

اقرأ أيضاً

We investigate the kinematic properties of a large (N=998) sample of COSMOS spectroscopic galaxy members distributed among 79 groups. We identify the Brightest Group Galaxies (BGGs) and cross-match our data with the VLA-COSMOS Deep survey at 1.4 GHz, classifying our parent sample into radio/non-radio BGGs and radio/non-radio satellites. The radio luminosity distribution spans from $L_Rsim2times10^{21}$ W Hz$^{-1}$ to $L_Rsim3times$10$^{25}$ W Hz$^{-1}$. A phase-space analysis, performed by comparing the velocity ratio (line-of-sight velocity divided by the group velocity dispersion) with the galaxy-group centre offset, reveals that BGGs (radio and non-radio) are mostly ($sim$80%) ancient infallers. Furthermore, the strongest ($L_R>10^{23}$ W Hz$^{-1}$) radio galaxies are always found within 0.2$R_{rm vir}$ from the group centre. Comparing our samples with HORIZON-AGN, we find that the velocities and offsets of simulated galaxies are more similar to radio BGGs than to non-radio BGGs, albeit statistical tests still highlight significant differences between simulated and real objects. We find that radio BGGs are more likely to be hosted in high-mass groups. Finally, we observe correlations between the powers of BGG radio galaxies and the X-ray temperatures, $T_{rm x}$, and X-ray luminosities, $L_{rm x}$, of the host groups. This supports the existence of a link between the intragroup medium and the central radio source. The occurrence of powerful radio galaxies at group centres can be explained by Chaotic Cold Accretion, as the AGN can feed from both the galactic and intragroup condensation, leading to the observed positive $L_{rm R}-T_{rm x}$ correlation.
We present detailed observations of photoionization conditions and galaxy kinematics in eleven z$=1.39-2.59$ radio-loud quasar host galaxies. Data was taken with OSIRIS integral field spectrograph (IFS) and the adaptive optics system at the W.M. Keck Observatory that targeted nebular emission lines (H$beta$,[OIII],H$alpha$,[NII]) redshifted into the near-infrared (1-2.4 micron). We detect extended ionized emission on scales ranging from 1-30 kpc photoionized by stars, shocks, and active galactic nuclei (AGN). Spatially resolved emission-line ratios indicate that our systems reside off the star formation and AGN-mixing sequence on the Baldwin, Phillips $&$ Terlevich (BPT) diagram at low redshift. The dominant cause of the difference between line ratios of low redshift galaxies and our sample is due to lower gas-phase metallicities, which are 2-5$times$ less compared to galaxies with AGN in the nearby Universe. Using gas velocity dispersion as a proxy to stellar velocity dispersion and dynamical mass measurement through inclined disk modeling we find that the quasar host galaxies are under-massive relative to their central supermassive black hole (SMBH) mass, with all systems residing off the local scaling ($M_{bullet}-sigma~$,$M_{bullet}-M_{*}~$) relationship. These quasar host galaxies require substantial growth, up to an order of magnitude in stellar mass, to grow into present-day massive elliptical galaxies. Combining these results with part I of our sample paper (Vayner et al. 2021) we find evidence for winds capable of causing feedback before the AGN host galaxies land on the local scaling relation between black hole and galaxy stellar mass, and before the enrichment of the ISM to a level observed in local galaxies with AGN.
We present a multiwavelength study of the AGN-host starburst galaxy PKS 0529-549 at z~2.6. We use (1) new ALMA observations of the dust continuum and of the [CI] 370 um line, tracing molecular gas, (2) SINFONI spectroscopy of the [OIII] 5007 Ang line , tracing ionized gas, and (3) ATCA radio continuum images, tracing synchrotron emission. Both [CI] and [OIII] show regular velocity gradients, but their systemic velocities and position angles differ by ~300 km/s and ~30 degrees, respectively. The [CI] is consistent with a rotating disc, aligned with the dust and stellar continuum, while the [OIII] likely traces an outflow, aligned with two AGN-driven radio lobes. We model the [CI] cube using 3D disc models, which give best-fit rotation velocities V~310 km/s and velocity dispersions sigma<30 km/s. Hence, the [CI] disc has V/sigma>10 and is not particularly turbulent, similar to local galaxy discs. The dynamical mass (~10^11 Msun) is comparable to the baryonic mass within the errors. This suggests that baryons dominate the inner galaxy dynamics, similar to massive galaxies at z=0. Remarkably, PKS 0529-549 lies on the local baryonic Tully-Fisher relation, indicating that at least some massive galaxies are already in place and kinematically relaxed at z~2.6. This work highlights the potential of the [CI] line to trace galaxy dynamics at high z, as well as the importance of multiwavelength data to interpret gas kinematics.
186 - Etsuko Mieda 2016
We present results from IROCKS (Intermediate Redshift OSIRIS Chemo-Kinematic Survey) for sixteen z~1 and one z~1.4 star-forming galaxies. All galaxies were observed with OSIRIS with the laser guide star adaptive optics system at Keck Observatory. We use rest-frame nebular Ha emission lines to trace morphologies and kinematics of ionized gas in star-forming galaxies on sub-kiloparsec physical scales. We observe elevated velocity dispersions (sigma > 50 km/s) seen in z > 1.5 galaxies persist at z~1 in the integrated galaxies. Using an inclined disk model and the ratio of v/sigma, we find that 1/3 of the z~1 sample are disk candidates while the other 2/3 of the sample are dominated by merger-like and irregular sources. We find that including extra attenuation towards HII regions derived from stellar population synthesis modeling brings star formation rates (SFR) using Ha and stellar population fit into a better agreement. We explore properties of compact Ha sub-component, or clump, at z~1 and find that they follow a similar size-luminosity relation as local HII regions but are scaled-up by an order of magnitude with higher luminosities and sizes. Comparing the z~1 clumps to other high-redshift clump studies, we determine that the clump SFR surface density evolves as a function of redshift. This may imply clump formation is directly related to the gas fraction in these systems and support disk fragmentation as their formation mechanism since gas fraction scales with redshift.
70 - V. Olivares 2016
We present near-infrared integral-field spectroscopic observations targeting H$alpha$ in eight sub-millimeter galaxies (SMGs) at $z$=1.3-2.5 using VLT/SINFONI, obtaining significant detections for six of them. The star formation rates derived from th e H$alpha$ emission are $sim$100 M$_odot$yr$^{-1}$, which account for only $sim$ 20-30% of the infrared-derived values, thus suggesting that these systems are very dusty. Two of these systems present [NII]/H$alpha$ ratios indicative of the presence of an Active Galactic Nucleus (AGN). We mapped the spatial distribution and kinematics of the star forming regions in these galaxies on kpc-scales. In general, the H$alpha$ morphologies tend to be highly irregular and/or clumpy, showing spatial extents of $sim$3-11~kpc. We find evidence for significant spatial offsets, of $sim$0.1-0.4$$ or 1.2-3.4 kpc, between the H$alpha$ and the continuum emission in three of the sources. Performing a kinemetry analysis we conclude that the majority of the sample is not consistent with disk-like rotation-dominated kinematics. Instead, they tend to show irregular and/or clumpy and turbulent velocity and velocity dispersion fields. This can be interpreted as evidence for scenario in which these extreme star formation episodes are triggered by galaxy-galaxy interactions and major mergers. In contrast to recent results for SMGs, these sources appear to follow the same relations between gas and star forming rate densities as less luminous and/or normal star forming galaxies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا