ترغب بنشر مسار تعليمي؟ اضغط هنا

The AGN-galaxy-halo connection: The distribution of AGN host halo masses to z=2.5

144   0   0.0 ( 0 )
 نشر من قبل James Aird
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

It is widely reported, based on clustering measurements of observed active galactic nuclei (AGN) samples, that AGN reside in similar mass host dark matter halos across the bulk of cosmic time, with log $M/M_odot$~12.5-13.0 to z~2.5. We show that this is due in part to the AGN fraction in galaxies rising with increasing stellar mass, combined with AGN observational selection effects that exacerbate this trend. Here, we use AGN specific accretion rate distribution functions determined as a function of stellar mass and redshift for star-forming and quiescent galaxies separately, combined with the latest galaxy-halo connection models, to determine the parent and sub-halo mass distribution function of AGN to various observational limits. We find that while the median (sub-)halo mass of AGN, $approx10^{12}M_odot$, is fairly constant with luminosity, specific accretion rate, and redshift, the full halo mass distribution function is broad, spanning several orders of magnitude. We show that widely used methods to infer a typical dark matter halo mass based on an observed AGN clustering amplitude can result in biased, systematically high host halo masses. While the AGN satellite fraction rises with increasing parent halo mass, we find that the central galaxy is often not an AGN. Our results elucidate the physical causes for the apparent uniformity of AGN host halos across cosmic time and underscore the importance of accounting for AGN selection biases when interpreting observational AGN clustering results. We further show that AGN clustering is most easily interpreted in terms of the relative bias to galaxy samples, not from absolute bias measurements alone.

قيم البحث

اقرأ أيضاً

SubHalo Abundance Matching (SHAM) assumes that one (sub)halo property, such as mass Mvir or peak circular velocity Vpeak, determines properties of the galaxy hosted in each (sub)halo such as its luminosity or stellar mass. This assumption implies tha t the dependence of Galaxy Luminosity Functions (GLFs) and the Galaxy Stellar Mass Function (GSMF) on environmental density is determined by the corresponding halo density dependence. In this paper, we test this by determining from an SDSS sample the observed dependence with environmental density of the ugriz GLFs and GSMF for all galaxies, and for central and satellite galaxies separately. We then show that the SHAM predictions are in remarkable agreement with these observations, even when the galaxy population is divided between central and satellite galaxies. However, we show that SHAM fails to reproduce the correct dependence between environmental density and g-r color for all galaxies and central galaxies, although it better reproduces the color dependence on environmental density of satellite galaxies.
We explore the connection between the stellar component of galaxies and their host halos during the epoch of reionization ($5 leq zleq10$) using the CROC (Cosmic Reionization on Computers) simulations. We compare simulated galaxies with observations and find that CROC underpredicts the abundance of luminous galaxies when compared to observed UV luminosity functions, and analogously the most massive galaxies when compared to observed stellar mass functions. We can trace the deficit of star formation to high redshifts, where the slope of the star formation rate to stellar mass relation is consistent with observations, but the normalization is systematically low. This results in a star formation rate density and stellar mass density that is systematically offset from observations. However, the less luminous or lower stellar mass objects have luminosities and stellar masses that agree fairly well with observational data. We explore the stellar-to-halo mass ratio, a key quantity that is difficult to measure at high redshifts and that models do not consistently predict. In CROC, the stellar-to-halo mass ratio {it decreases} with redshift, a trend opposite to some abundance matching studies. These discrepancies uncover where future effort should be focused in order to improve the fidelity of modeling cosmic reionization. We also compare the CROC galaxy bias with observational measurements using Lyman-Break Galaxy (LBG) samples. The good agreement of simulation and data shows that the clustering of dark matter halos is properly captured in CROC.
High mass galaxies, with halo masses $M_{200} ge 10^{10} M_{odot}$, reveal a remarkable near-linear relation between their globular cluster (GC) system mass and their host galaxy halo mass. Extending this relation to the mass range of dwarf galaxies has been problematic due to the difficulty in measuring independent halo masses. Here we derive new halo masses based on stellar and HI gas kinematics for a sample of nearby dwarf galaxies with GC systems. We find that the GC system mass--halo mass relation for galaxies populated by GCs holds from halo masses of $M_{200} sim 10^{14} M_{odot}$ down to below $M_{200}$ $sim 10^9 M_{odot}$, although there is a substantial increase in scatter towards low masses. In particular, three well-studied ultra diffuse galaxies, with dwarf-like stellar masses, reveal a wide range in their GC-to-halo mass ratios. We compare our GC system--halo mass relation to the recent model of El Badry et al., finding that their fiducial model does not reproduce our data in the low mass regime. This may suggest that GC formation needs to be more efficient than assumed in their model, or it may be due to the onset of stochastic GC occupation in low mass halos. Finally, we briefly discuss the stellar mass-halo mass relation for our low mass galaxies with GCs, and we suggest some nearby dwarf galaxies for which searches for GCs may be fruitful.
We present evidence that AGN do not reside in ``special environments, but instead show large-scale clustering determined by the properties of their host galaxies. Our study is based on an angular cross-correlation analysis applied to X-ray selected A GN in the COSMOS and UDS fields, spanning redshifts from $zsim4.5$ to $zsim0.5$. Consistent with previous studies, we find that AGN at all epochs are on average hosted by galaxies in dark matter halos of $10^{12}-10^{13}$ M$_{odot}$, intermediate between star-forming and passive galaxies. We find, however, that the same clustering signal can be produced by inactive (i.e. non-AGN) galaxies closely matched to the AGN in spectral class, stellar mass and redshift. We therefore argue that the inferred bias for AGN lies in between the star-forming and passive galaxy populations because AGN host galaxies are comprised of a mixture of the two populations. Although AGN hosted by higher mass galaxies are more clustered than lower mass galaxies, this stellar mass dependence disappears when passive host galaxies are removed. The strength of clustering is also largely independent of AGN X-ray luminosity. We conclude that the most important property that determines the clustering in a given AGN population is the fraction of passive host galaxies. We also infer that AGN luminosity is likely not driven by environmental triggering, and further hypothesise that AGN may be a stochastic phenomenon without a strong dependence on environment.
We present the first results from the Quasar Feedback Survey, a sample of 42 z<0.2, [O III] luminous AGN (L[O III]>10^42.1 ergs/s) with moderate radio luminosities (i.e. L(1.4GHz)>10^23.4 W/Hz; median L(1.4GHz)=5.9x10^23 W/Hz). Using high spatial res olution (~0.3-1 arcsec), 1.5-6 GHz radio images from the Very Large Array, we find that 67 percent of the sample have spatially extended radio features, on ~1-60 kpc scales. The radio sizes and morphologies suggest that these may be lower radio luminosi
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا