ﻻ يوجد ملخص باللغة العربية
Quantum photonics plays a crucial role in the development of novel communication and sensing technologies. Color centers hosted in silicon carbide and diamond offer single photon emission and long coherence spins that can be scalably implemented in quantum networks. We develop systems that integrate these color centers with photonic devices that modify their emission properties through electromagnetically tailored light and matter interaction.
Silicon carbide is a promising platform for single photon sources, quantum bits (qubits) and nanoscale sensors based on individual color centers. Towards this goal, we develop a scalable array of nanopillars incorporating single silicon vacancy cente
We demonstrate a new approach for engineering group IV semiconductor-based quantum photonic structures containing negatively charged silicon-vacancy (SiV$^-$) color centers in diamond as quantum emitters. Hybrid SiC/diamond structures are realized by
We demonstrate that the spin of optically addressable point defects can be coherently driven with AC electric fields. Based on magnetic-dipole forbidden spin transitions, this scheme enables spatially confined spin control, the imaging of high-freque
By harnessing quantum superposition and entanglement, remarkable progress has sprouted over the past three decades from different areas of research in communication computation and simulation. To further improve the processing ability of microwave ph
Silicon carbide is evolving as a prominent solid-state platform for the realization of quantum information processing hardware. Angle-etched nanodevices are emerging as a solution to photonic integration in bulk substrates where color centers are bes