ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum photonics in triangular-cross-section nanodevices in silicon carbide

83   0   0.0 ( 0 )
 نشر من قبل Sridhar Majety
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Silicon carbide is evolving as a prominent solid-state platform for the realization of quantum information processing hardware. Angle-etched nanodevices are emerging as a solution to photonic integration in bulk substrates where color centers are best defined. We model triangular cross-section waveguides and photonic crystal cavities using Finite-Difference Time-Domain and Finite-Difference Eigensolver approaches. We analyze optimal color center positioning within the modes of these devices and provide estimates on achievable Purcell enhancement in nanocavities with applications in quantum communications. Using open quantum system modeling, we explore emitter-cavity interactions of multiple non-identical color centers coupled to both a single cavity and a photonic crystal molecule in SiC. We observe polariton and subradiant state formation in the cavity-protected regime of cavity quantum electrodynamics applicable in quantum simulation.

قيم البحث

اقرأ أيضاً

Silicon carbide is a promising platform for single photon sources, quantum bits (qubits) and nanoscale sensors based on individual color centers. Towards this goal, we develop a scalable array of nanopillars incorporating single silicon vacancy cente rs in 4H-SiC, readily available for efficient interfacing with free-space objective and lensed-fibers. A commercially obtained substrate is irradiated with 2 MeV electron beams to create vacancies. Subsequent lithographic process forms 800 nm tall nanopillars with 400-1,400 nm diameters. We obtain high collection efficiency, up to 22 kcounts/s optical saturation rates from a single silicon vacancy center, while preserving the single photon emission and the optically induced electron-spin polarization properties. Our study demonstrates silicon carbide as a readily available platform for scalable quantum photonics architecture relying on single photon sources and qubits.
We present the design, fabrication, and characterization of high quality factor and small mode volume planar photonic crystal cavities from cubic (3C) thin films (thickness ~ 200 nm) of silicon carbide (SiC) grown epitaxially on a silicon substrate. We demonstrate cavity resonances across the telecommunications band, with wavelengths from 1,250 - 1,600 nm. Finally, we discuss possible applications in nonlinear optics, optical interconnects, and quantum information science.
Quantum photonics plays a crucial role in the development of novel communication and sensing technologies. Color centers hosted in silicon carbide and diamond offer single photon emission and long coherence spins that can be scalably implemented in q uantum networks. We develop systems that integrate these color centers with photonic devices that modify their emission properties through electromagnetically tailored light and matter interaction.
We present the design, fabrication and characterization of cubic (3C) silicon carbide microdisk resonators with high quality factor modes at visible and near infrared wavelengths (600 - 950 nm). Whispering gallery modes with quality factors as high a s 2,300 and corresponding mode volumes V ~ 2 ({lambda}/n)^3 are measured using laser scanning confocal microscopy at room temperature. We obtain excellent correspondence between transverse-magnetic (TM) and transverse-electric (TE) polarized resonances simulated using Finite Difference Time Domain (FDTD) method and those observed in experiment. These structures based on ensembles of optically active impurities in 3C-SiC resonators could play an important role in diverse applications of nonlinear and quantum photonics, including low power optical switching and quantum memories.
The ability to use photonic quasiparticles to control electromagnetic energy far below the diffraction limit is a defining paradigm in nanophotonics. An important recent development in this field is the measurement and manipulation of extremely confi ned phonon-polariton modes in polar dielectrics such as silicon carbide and hexagonal boron nitride, which pave the way for nanophotonics and extreme light-matter interactions in the mid-IR to THz frequency range. To further advance this promising field, it is of great interest to predict the optical response of recently discovered and yet-to-be-synthesized polaritonic materials alike. Here we develop a unified framework based on quantum linear response theory to calculate the spatially non-local dielectric function of a polar lattice in arbitrary dimensions. In the case of a three-dimensional bulk material, the spatially local limit of our calculation reproduces standard results for the dielectric response of a polar lattice. Using this framework, we provide ab initio calculations of the dielectric permittivity of important bulk polar dielectrics such as silicon carbide and hexagonal boron nitride in good agreement with experiments. From the ab initio theory, we are able to develop a microscopic understanding of which phonon modes contribute to each component of the dielectric function, as well as predict features in the dielectric function that are a result of weak TO phonons. This formalism also identifies regime(s) where quantum nonlocal effects may correct the phonon polariton dispersion, extremely relevant in recent atomic-scale experiments which confine electromagnetic fields to the scale of 1~nm. Finally, our work points the way towards first principles descriptions of the effect of interface phonons, phonon strong coupling, and chiral phonons on the properties of phonon polaritons.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا