ﻻ يوجد ملخص باللغة العربية
We demonstrate a new approach for engineering group IV semiconductor-based quantum photonic structures containing negatively charged silicon-vacancy (SiV$^-$) color centers in diamond as quantum emitters. Hybrid SiC/diamond structures are realized by combining the growth of nanoand micro-diamonds on silicon carbide (3C or 4H polytype) substrates, with the subsequent use of these diamond crystals as a hard mask for pattern transfer. SiV$^-$ color centers are incorporated in diamond during its synthesis from molecular diamond seeds (diamondoids), with no need for ionimplantation or annealing. We show that the same growth technique can be used to grow a diamond layer controllably doped with SiV$^-$ on top of a high purity bulk diamond, in which we subsequently fabricate nanopillar arrays containing high quality SiV$^-$ centers. Scanning confocal photoluminescence measurements reveal optically active SiV$^-$ lines both at room temperature and low temperature (5 K) from all fabricated structures, and, in particular, very narrow linewidths and small inhomogeneous broadening of SiV$^-$ lines from all-diamond nano-pillar arrays, which is a critical requirement for quantum computation. At low temperatures (5 K) we observe in these structures the signature typical of SiV$^-$ centers in bulk diamond, consistent with a double lambda. These results indicate that high quality color centers can be incorporated into nanophotonic structures synthetically with properties equivalent to those in bulk diamond, thereby opening opportunities for applications in classical and quantum information processing.
Quantum photonics plays a crucial role in the development of novel communication and sensing technologies. Color centers hosted in silicon carbide and diamond offer single photon emission and long coherence spins that can be scalably implemented in q
The silicon-vacancy centre (SiV) in diamond has interesting vibronic features. We demonstrate that the zero phonon line position can be used to reliably identify the silicon isotope present in a single centre. This is of interest for quantum informat
The hyperfine interaction is an important probe for understanding the structure and symmetry of defects in a semiconductor. Density-functional theory has shown that it can provide useful first-principles predictions for both the hyperfine tensor and
We report on the creation and characterization of the luminescence properties of high-purity diamond substrates upon F ion implantation and subsequent thermal annealing. Their room-temperature photoluminescence emission consists of a weak emission li
We review recent advances towards the realization of quantum networks based on atom-like solid-state quantum emitters coupled to nanophotonic devices. Specifically, we focus on experiments involving the negatively charged silicon-vacancy color center