ترغب بنشر مسار تعليمي؟ اضغط هنا

Scalable Quantum Photonics with Single Color Centers in Silicon Carbide

108   0   0.0 ( 0 )
 نشر من قبل Marina Radulaski
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Silicon carbide is a promising platform for single photon sources, quantum bits (qubits) and nanoscale sensors based on individual color centers. Towards this goal, we develop a scalable array of nanopillars incorporating single silicon vacancy centers in 4H-SiC, readily available for efficient interfacing with free-space objective and lensed-fibers. A commercially obtained substrate is irradiated with 2 MeV electron beams to create vacancies. Subsequent lithographic process forms 800 nm tall nanopillars with 400-1,400 nm diameters. We obtain high collection efficiency, up to 22 kcounts/s optical saturation rates from a single silicon vacancy center, while preserving the single photon emission and the optically induced electron-spin polarization properties. Our study demonstrates silicon carbide as a readily available platform for scalable quantum photonics architecture relying on single photon sources and qubits.



قيم البحث

اقرأ أيضاً

Quantum photonics plays a crucial role in the development of novel communication and sensing technologies. Color centers hosted in silicon carbide and diamond offer single photon emission and long coherence spins that can be scalably implemented in q uantum networks. We develop systems that integrate these color centers with photonic devices that modify their emission properties through electromagnetically tailored light and matter interaction.
We demonstrate that the spin of optically addressable point defects can be coherently driven with AC electric fields. Based on magnetic-dipole forbidden spin transitions, this scheme enables spatially confined spin control, the imaging of high-freque ncy electric fields, and the characterization of defect spin multiplicity. While we control defects in SiC, these methods apply to spin systems in many semiconductors, including the nitrogen-vacancy center in diamond. Electrically driven spin resonance offers a viable route towards scalable quantum control of electron spins in a dense array.
We create and isolate single-photon emitters with a high brightness approaching $10^5$ counts per second in commercial silicon-on-insulator (SOI) wafers. The emission occurs in the infrared spectral range with a spectrally narrow zero phonon line in the telecom O-band and shows a high photostability even after days of continuous operation. The origin of the emitters is attributed to one of the carbon-related color centers in silicon, the so-called G center, allowing purification with the $^{12}$C and $^{28}$Si isotopes. Furthermore, we envision a concept of a highly-coherent scalable quantum photonic platform, where single-photon sources, waveguides and detectors are integrated on a SOI chip. Our results provide a route towards the implementation of quantum processors, repeaters and sensors compatible with the present-day silicon technology.
Silicon carbide is evolving as a prominent solid-state platform for the realization of quantum information processing hardware. Angle-etched nanodevices are emerging as a solution to photonic integration in bulk substrates where color centers are bes t defined. We model triangular cross-section waveguides and photonic crystal cavities using Finite-Difference Time-Domain and Finite-Difference Eigensolver approaches. We analyze optimal color center positioning within the modes of these devices and provide estimates on achievable Purcell enhancement in nanocavities with applications in quantum communications. Using open quantum system modeling, we explore emitter-cavity interactions of multiple non-identical color centers coupled to both a single cavity and a photonic crystal molecule in SiC. We observe polariton and subradiant state formation in the cavity-protected regime of cavity quantum electrodynamics applicable in quantum simulation.
Single crystal diamond membranes that host optically active emitters are highly attractive components for integrated quantum nanophotonics. In this work we demonstrate bottom-up synthesis of single crystal diamond membranes containing the germanium v acancy (GeV) color centers. We employ a lift-off technique to generate the membranes and perform chemical vapour deposition in a presence of germanium oxide to realize the insitu doping. Finally, we show that these membranes are suitable for engineering of photonic resonators such as microring cavities with quality factors of 1500. The robust and scalable approach to engineer single crystal diamond membranes containing emerging color centers is a promising pathway for realization of diamond integrated quantum nanophotonic circuits on a chip.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا