ترغب بنشر مسار تعليمي؟ اضغط هنا

Highly-Oriented Atomically Thin Ambipolar MoSe$_2$ Grown by Molecular Beam Epitaxy

98   0   0.0 ( 0 )
 نشر من قبل Andras Kis PhD
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Transition metal dichalcogenides (TMDCs), together with other two-dimensional (2D) materials have attracted great interest due to the unique optical and electrical properties of atomically thin layers. In order to fulfill their potential, developing large-area growth and understanding the properties of TMDCs have become crucial. Here, we used molecular beam epitaxy (MBE) to grow atomically thin MoSe$_2$ on GaAs(111)B. No intermediate compounds were detected at the interface of as-grown films. Careful optimization of the growth temperature can result in the growth of highly aligned films with only two possible crystalline orientations due to broken inversion symmetry. As-grown films can be transferred onto insulating substrates allowing their optical and electrical properties to be probed. By using polymer electrolyte gating, we have achieved ambipolar transport in MBE-grown MoSe$_2$. The temperature-dependent transport characteristics can be explained by the 2D variable-range hopping (2D-VRH) model, indicating that the transport is strongly limited by the disorder in the film.



قيم البحث

اقرأ أيضاً

Atomically thin PtSe2 films have attracted extensive research interests for potential applications in high-speed electronics, spintronics and photodetectors. Obtaining high quality, single crystalline thin films with large size is critical. Here we r eport the first successful layer-by-layer growth of high quality PtSe2 films by molecular beam epitaxy. Atomically thin films from 1 ML to 22 ML have been grown and characterized by low-energy electron diffraction, Raman spectroscopy and X-ray photoemission spectroscopy. Moreover, a systematic thickness dependent study of the electronic structure is revealed by angle-resolved photoemission spectroscopy (ARPES), and helical spin texture is revealed by spin-ARPES. Our work provides new opportunities for growing large size single crystalline films for investigating the physical properties and potential applications of PtSe2.
Quantum anomalous Hall (QAH) effect is a quantum Hall effect that occurs without the need of external magnetic field. A system composed of multiple parallel QAH layers is an effective high Chern number QAH insulator and the key to the applications of the dissipationless chiral edge channels in low energy consumption electronics. Such a QAH multilayer can also be engineered into other exotic topological phases such as a magnetic Weyl semimetal with only one pair of Weyl points. This work reports the first experimental realization of QAH multilayers in the superlattices composed of magnetically doped (Bi,Sb)$_2$Te$_3$ topological insulator and CdSe normal insulator layers grown by molecular beam epitaxy. The obtained multilayer samples show quantized Hall resistance $h/Ne$$^2$, where $h$ is the Plancks constant, $e$ is the elementary charge and $N$ is the number of the magnetic topological insulator layers, resembling a high Chern number QAH insulator.
93 - Hongxi Li , Linjing Wang , Tao Yu 2019
Materials with perpendicular magnetic anisotropy (PMA) effect with high Curie temperature ($T_C$) is essential in applications. In this work, $Cr_2Te_3$ thin films showing PMA with $T_C$ ranging from 165 K to 295 K were successfully grown on $Al_2O_3 $ by the molecular beam epitaxy (MBE) technique. The structural analysis, magneto-transport and magnetic characterizations were conducted to study the physical origin of the improved $T_C$. In particular, ferromagnetic (FM) and antiferromagnetic (AFM) ordering competition were investigated. A phenomenological model based on the coupling degree between FM and AFM ordering was proposed to explain the observed $T_C$ enhancement. Our findings indicate that the $T_C$ of $Cr_2Te_3$ thin film can be tuned, which make it hold the potential for various magnetic applications.
Hexagonal boron nitride (h-BN) is a layered two-dimensional material with properties that make it promising as a dielectric in various applications. We report the growth of h-BN films on Ni foils from elemental B and N using molecular beam epitaxy. T he presence of crystalline h-BN over the entire substrate is confirmed by Raman spectroscopy. Atomic force microscopy is used to examine the morphology and continuity of the synthesized films. A scanning electron microscopy study of films obtained using shorter depositions offers insight into the nucleation and growth behavior of h-BN on the Ni substrate. The morphology of h-BN was found to evolve from dendritic, star-shaped islands to larger, smooth triangular ones with increasing growth temperature.
Superconducting thin films of magnesium diboride (MgB$_2$) were prepared on MgO (001) substrate by a molecular beam epitaxy (MBE) method with the co-evaporation conditions of low deposition rate in ultra-high vacuum. The structural and physical prope rties of the films were studied by RHEED, XRD, XPS, resistivity and magnetization measurements.All films demonstrated superconductivity without use of any post-annealing process.The highest {it T}$_{c,onset}$ determined by resistivity measurement was about 33K in the present samples.Anisotropic superconducting properties were evaluated by the resistivity and magnetic measurements.We will discuss the anisotropy of superconductivity for as-grown MgB$_2$ thin films.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا