ﻻ يوجد ملخص باللغة العربية
InGaAs/GaAsBi/InGaAs quantum wells (QWs) were grown on GaAs substrates by gas source molecular beam epitaxy for realizing the type II band-edge line-up. Both type I and type II transitions were observed in the Bi containing W QWs and the photoluminescence intensity was enhanced in the sample with a high Bi content, which is mainly due to the improvement of carrier confinement. Blue-shift of type II transitions at high excitation power density was observed and ascribed to the band-bending effect. The calculated transition energies based on 8 band k.p model fit well with the experiment results. The experimental and theoretical results show that the type-II QW design is a new promising candidate for realizing long wavelength GaAs-based light emitting devices near 1.3 um.
An efficient electrical spin injection into an InGaAs/GaAs quantum well light emitting diode is demonstrated thanks to a CoFeB/MgO spin injector. The textured MgO tunnel barrier is fabricated by two different techniques: sputtering and molecular beam
Quantum anomalous Hall (QAH) effect is a quantum Hall effect that occurs without the need of external magnetic field. A system composed of multiple parallel QAH layers is an effective high Chern number QAH insulator and the key to the applications of
We report the growth of self-assembled Bi2Se3 quantum dots (QDs) by molecular beam epitaxy on GaAs substrates using the droplet epitaxy technique. The QD formation occurs after anneal of Bismuth droplets under Selenium flux. Characterization by atomi
Circularly-polarized magneto-photoluminescence (magneto-PL) technique has been applied to investigate Zeeman effect in InAs/InGaAs/InAlAs quantum wells (QWs) in Faraday geometry. Structures with different thickness of the QW barriers have been studie
Atomically thin PtSe2 films have attracted extensive research interests for potential applications in high-speed electronics, spintronics and photodetectors. Obtaining high quality, single crystalline thin films with large size is critical. Here we r