ترغب بنشر مسار تعليمي؟ اضغط هنا

Experimental evidence of the non-diffusive avalanche-like electron heat transport events and their dynamical interaction with the shear flow structure

42   0   0.0 ( 0 )
 نشر من قبل Minjun Choi
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Minjun J. Choi




اسأل ChatGPT حول البحث

We present experimental observations suggesting that the non-diffusive avalanche-like events are a prevalent and universal process of the electron turbulent heat transport in tokamak core plasmas. They are observed in the low confinement mode and the weak internal transport barrier tokamak plasmas in the absence of magnetohydrodynamic instabilities. In addition, the electron temperature profile corrugation, which indicates the existence of the $E times B$ shear flow layers, is clearly demonstrated as well as their dynamical interaction with the avalanche-like events. The measured width of the profile corrugation is around $45rho_i$, which implies the mesoscale nature of the structure.

قيم البحث

اقرأ أيضاً

91 - K. Gustafson 2008
Finite Larmor radius (FLR) effects on non-diffusive transport in a prototypical zonal flow with drift waves are studied in the context of a simplified chaotic transport model. The model consists of a superposition of drift waves of the linearized Has egawa-Mima equation and a zonal shear flow perpendicular to the density gradient. High frequency FLR effects are incorporated by gyroaveraging the ExB velocity. Transport in the direction of the density gradient is negligible and we therefore focus on transport parallel to the zonal flows. A prescribed asymmetry produces strongly asymmetric non- Gaussian PDFs of particle displacements, with Levy flights in one direction but not the other. For zero Larmor radius, a transition is observed in the scaling of the second moment of particle displacements. However, FLR effects seem to eliminate this transition. The PDFs of trapping and flight events show clear evidence of algebraic scaling with decay exponents depending on the value of the Larmor radii. The shape and spatio-temporal self-similar anomalous scaling of the PDFs of particle displacements are reproduced accurately with a neutral, asymmetric effective fractional diffusion model.
53 - F. Zonca 2007
We discuss the processes underlying the excitation of fishbone-like internal kink instabilities driven by supra-thermal electrons generated experimentally by different means: Electron Cyclotron Resonance Heating (ECRH) and by Lower Hybrid (LH) power injection. The peculiarity and interest of exciting these electron fishbones by ECRH only or by LH only is also analyzed. Not only the mode stability is explained, but also the transition between steady state nonlinear oscillations to bursting (almost regular) pulsations, as observed in FTU, is interpreted in terms of the LH power input. These results are directly relevant to the investigation of trapped alpha particle interactions with low-frequency MHD modes in burning plasmas: in fact, alpha particles in reactor relevant conditions are characterized by small dimensionless orbits, similarly to electrons; the trapped particle bounce averaged dynamics, meanwhile, depends on energy and not mass.
The Kelvin-Helmholtz (KH) instability of a shear layer with an initially-uniform magnetic field in the direction of flow is studied in the framework of 2D incompressible magnetohydrodynamics with finite resistivity and viscosity using direct numerica l simulations. The shear layer evolves freely, with no external forcing, and thus broadens in time as turbulent stresses transport momentum across it. As with KH-unstable flows in hydrodynamics, the instability here features a conjugate stable mode for every unstable mode in the absence of dissipation. Stable modes are shown to transport momentum up its gradient, shrinking the layer width whenever they exceed unstable modes in amplitude. In simulations with weak magnetic fields, the linear instability is minimally affected by the magnetic field, but enhanced small-scale fluctuations relative to the hydrodynamic case are observed. These enhanced fluctuations coincide with increased energy dissipation and faster layer broadening, with these features more pronounced in simulations with stronger fields. These trends result from the magnetic field reducing the effects of stable modes relative to the transfer of energy to small scales. As field strength increases, stable modes become less excited and thus transport less momentum against its gradient. Furthermore, the energy that would otherwise transfer back to the driving shear due to stable modes is instead allowed to cascade to small scales, where it is lost to dissipation. Approximations of the turbulent state in terms of a reduced set of modes are explored. While the Reynolds stress is well-described using just two modes per wavenumber at large scales, the Maxwell stress is not.
We compute electrical and thermal conductivities of hydrogen plasmas in the non-degenerate regime using Kohn-Sham Density Functional Theory (DFT) and an application of the Kubo-Greenwood response formula, and demonstrate that for thermal conductivity , the mean-field treatment of the electron-electron (e-e) interaction therein is insufficient to reproduce the weak-coupling limit obtained by plasma kinetic theories. An explicit e-e scattering correction to the DFT is posited by appealing to Matthiessens Rule and the results of our computations of conductivities with the quantum Lenard-Balescu (QLB) equation. Further motivation of our correction is provided by an argument arising from the Zubarev quantum kinetic theory approach. Significant emphasis is placed on our efforts to produce properly converged results for plasma transport using Kohn-Sham DFT, so that an accurate assessment of the importance and efficacy of our e-e scattering corrections to the thermal conductivity can be made.
57 - ME Dieckmann , H Ahmed , G Sarri 2013
Nonrelativistic electrostatic unmagnetized shocks are frequently observed in laboratory plasmas and they are likely to exist in astrophysical plasmas. Their maximum speed, expressed in units of the ion acoustic speed far upstream of the shock, depend s only on the electron-to-ion temperature ratio if binary collisions are absent. The formation and evolution of such shocks is examined here for a wide range of shock speeds with particle-in-cell (PIC) simulations. The initial temperatures of the electrons and the 400 times heavier ions are equal. Shocks form on electron time scales at Mach numbers between 1.7 and 2.2. Shocks with Mach numbers up to 2.5 form after tens of inverse ion plasma frequencies. The density of the shock-reflected ion beam increases and the number of ions crossing the shock thus decreases with an increasing Mach number, causing a slower expansion of the downstream region in its rest frame. The interval occupied by this ion beam is on a positive potential relative to the far upstream. This potential pre-heats the electrons ahead of the shock even in the absence of beam instabilities and decouples the electron temperature in the foreshock ahead of the shock from the one in the far upstream plasma. The effective Mach number of the shock is reduced by this electron heating. This effect can potentially stabilize nonrelativistic electrostatic shocks moving as fast as supernova remnant (SNR) shocks.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا