ﻻ يوجد ملخص باللغة العربية
We compute electrical and thermal conductivities of hydrogen plasmas in the non-degenerate regime using Kohn-Sham Density Functional Theory (DFT) and an application of the Kubo-Greenwood response formula, and demonstrate that for thermal conductivity, the mean-field treatment of the electron-electron (e-e) interaction therein is insufficient to reproduce the weak-coupling limit obtained by plasma kinetic theories. An explicit e-e scattering correction to the DFT is posited by appealing to Matthiessens Rule and the results of our computations of conductivities with the quantum Lenard-Balescu (QLB) equation. Further motivation of our correction is provided by an argument arising from the Zubarev quantum kinetic theory approach. Significant emphasis is placed on our efforts to produce properly converged results for plasma transport using Kohn-Sham DFT, so that an accurate assessment of the importance and efficacy of our e-e scattering corrections to the thermal conductivity can be made.
The role played by the effective residual interaction in the transverse nuclear response for quasi-free electron scattering is discussed. The analysis is done by comparing different calculations performed in the Random--Phase Approximation and Ring A
We consider the possibility of formation of a superconductivity state either in a semiconductor or in a electron-hole plasma with the degenerate electrons due to the attractive forces between the electrons as a result of the exchange effects through
With the framework of KIDS (Korea-IBS-Daegu-SKKU) density functional model, the isoscalar and isovector effective masses of nucleon and the effect of symmetry energy in nuclear medium are investigated in inclusive (e, e) reaction in quasielastic regi
The mechanism of two-stage electron acceleration by backward stimulated Raman scattering (BSRS) and forward stimulated Raman scattering (FSRS) is demonstrated through relativistic Vlasov-Maxwell simulation. The theoretical model is given to judge the
The measurement of the axially lost electron energy distribution escaping from a minimum-B electron cyclotron resonance ion source in the range of 4-800 keV is reported. The experiments have revealed the existence of a hump at 150-300 keV energy, con