ترغب بنشر مسار تعليمي؟ اضغط هنا

Electron fishbones: Theory and experimental evidence

53   0   0.0 ( 0 )
 نشر من قبل Alexander V. Milovanov Dr.
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English
 تأليف F. Zonca




اسأل ChatGPT حول البحث

We discuss the processes underlying the excitation of fishbone-like internal kink instabilities driven by supra-thermal electrons generated experimentally by different means: Electron Cyclotron Resonance Heating (ECRH) and by Lower Hybrid (LH) power injection. The peculiarity and interest of exciting these electron fishbones by ECRH only or by LH only is also analyzed. Not only the mode stability is explained, but also the transition between steady state nonlinear oscillations to bursting (almost regular) pulsations, as observed in FTU, is interpreted in terms of the LH power input. These results are directly relevant to the investigation of trapped alpha particle interactions with low-frequency MHD modes in burning plasmas: in fact, alpha particles in reactor relevant conditions are characterized by small dimensionless orbits, similarly to electrons; the trapped particle bounce averaged dynamics, meanwhile, depends on energy and not mass.

قيم البحث

اقرأ أيضاً

41 - Minjun J. Choi 2018
We present experimental observations suggesting that the non-diffusive avalanche-like events are a prevalent and universal process of the electron turbulent heat transport in tokamak core plasmas. They are observed in the low confinement mode and the weak internal transport barrier tokamak plasmas in the absence of magnetohydrodynamic instabilities. In addition, the electron temperature profile corrugation, which indicates the existence of the $E times B$ shear flow layers, is clearly demonstrated as well as their dynamical interaction with the avalanche-like events. The measured width of the profile corrugation is around $45rho_i$, which implies the mesoscale nature of the structure.
The dynamics of energetic particles in strong electromagnetic fields can be heavily influenced by the energy loss arising from the emission of radiation during acceleration, known as radiation reaction. When interacting with a high-energy electron be am, todays lasers are sufficiently intense to explore the transition between the classical and quantum radiation reaction regimes. We report on the observation of radiation reaction in the collision of an ultra-relativistic electron beam generated by laser wakefield acceleration ($varepsilon > 500$ MeV) with an intense laser pulse ($a_0 > 10$). We measure an energy loss in the post-collision electron spectrum that is correlated with the detected signal of hard photons ($gamma$-rays), consistent with a quantum (stochastic) description of radiation reaction. The generated $gamma$-rays have the highest energies yet reported from an all-optical inverse Compton scattering scheme, with critical energy $varepsilon_{rm crit} > $ 30 MeV.
69 - G. Sharma , K. Deka , R. Paul 2021
A two-electron temperature plasma is produced by the method of diffusion of two different plasmas with distinct temperatures and densities. The method is simple and provides an adequate control over the plasma parameters. The study reveals that the t emperature and density of both the electron groups can be effectively controlled by just changing the discharge currents of both the plasmas. An ion-acoustic (IA) wave is excited in the plasma and is detected using a planar Langmuir probe. The damped amplitude of the wave is measured and is used as a diagnostic tool for establishing the presence of two-electron components. This production method can be helpful in controlling the hot electron density and temperature in plasma processing industries.
377 - Per Helander , J.W. Connor 2016
The linear gyrokinetic stability properties of magnetically confined electron-positron plasmas are investigated in the parameter regime most likely to be relevant for the first laboratory experiments involving such plasmas, where the density is small enough that collisions can be ignored and the Debye length substantially exceeds the gyroradius. Although the plasma beta is very small, electromagnetic effects are retained, but magnetic compressibility can be neglected. The work of a previous publication (Helander, 2014) is thus extended to include electromagnetic instabilities, which are of importance in closed-field-line configurations, where such instabilities can occur at arbitrarily low pressure. It is found that gyrokinetic instabilities are completely absent if the magnetic field is homogeneous: any instability must involve magnetic curvature or shear. Furthermore, in dipole magnetic fields, the stability threshold for interchange modes with wavelengths exceeding the Debye radius coincides with that in ideal MHD. Above this threshold, the quasilinear particle flux is directed inward if the temperature gradient is sufficiently large, leading to spontaneous peaking of the density profile.
In a cross-field (ExB) setup, the electron ExB flow relative to the unmagnetized ions can cause the Electron Cyclotron Drift Instability (ECDI) due to resonances of the ion-acoustic mode and the electron cyclotron harmonics. This occurs in collisionl ess shocks in magnetospheres and in ExB discharge devices such as Hall thrusters. ECDI induces an electron flow parallel to the background E field at a speed greatly exceeding predictions by classical collision theory. Such anomalous transport might cause unfavorable plasma flows towards the walls of ExB devices. Prediction of ECDI and anomalous transport is often thought to require a fully kinetic treatment. In this work, however, we demonstrate that a reduced variant of this instability, and more importantly, the anomalous transport, can be treated self-consistently in a collisionless two-fluid framework without any adjustable collision parameter, by treating both electron and ion species on an equal footing. We will first present linear analyses of the instability in the two-fluid 5- and 10-moment models, and compare them against the fully kinetic theory. At low temperatures, the two-fluid models predict the fastest-growing mode comparable to the kinetic results. Also, by including more moments, secondary (and possibly higher) unstable branches can be recovered. The dependence of the instability on ion-to-electron mass ratio, plasma temperature, and the background field strength is also thoroughly explored. We then carry out 5-moment simulations of the cross-field setup. The development of the instability and the anomalous transport are confirmed and in excellent agreement with theoretical predictions. The force balance properties are also studied. This work casts new insights into the nature of ECDI and the induced anomalous transport and demonstrates the potential of the two-fluid moment model in the efficient modeling of ExB plasmas.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا