ترغب بنشر مسار تعليمي؟ اضغط هنا

Breaking Pauli blockade via ultrafast cooling of hot electrons in optically-pumped graphene

381   0   0.0 ( 0 )
 نشر من قبل Yingying Zhu
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Pauli blockade occurs when the excited electrons fill up the states near the conduction bands and block subsequent absorption in semiconductors, and has been widely applied in mode-locking for passively-pulsed-laser systems. In this letter, we report the first direct observation that the Pauli blockade is broken by ultrafast cooling of hot electrons in optically-pumped graphene. With femtosecond spectroscopy, we demonstrate that the time scale to excite an electron (~100 fs) is of the same order as that of the electron decay via electron-electron scattering, which allows the electron excitation interplays strongly with the cooling of hot electrons. Consequently, Pauli blockade is dismissed, leading to an unconventionally enhanced optical absorption. We suggest that this effect is a universal feature of two-dimensional layered materials, which sheds the light of ultrafast carrier dynamics in nonlinear physics and inspires the designing of new-generation of ultrafast optoelectronic devices.

قيم البحث

اقرأ أيضاً

Optical nonlinearities in solids reveal information about both the in-plane rotational and out-of-plane inversion symmetries of a crystal. In the van der Waals material hexagonal boron nitride (hBN) both these symmetries and the linear vibrational pr operties have led to the rich physics of mid-infrared phonon-polaritons. However, the role of strong electron-phonon nonlinearities requires further study. In this work, we investigate both theoretically and experimentally the rich interplay of phonon anharmonicity and symmetry in phonon-polariton mediated nonlinear optics. We show that large enhancements (>30x) of third-harmonic generation occur for incident femtosecond pulses that are resonant with the hBN transverse optical phonons. In addition, we predict and observe large transient sub-picosecond duration second-harmonic signals during resonant excitation, which in equilibrium is forbidden by symmetry. This surprising result indicates that instantaneous crystal inversion symmetry breaking can be optically induced and controlled via phonon interactions by both the power and polarization of the pump laser.
Bandgap control is of central importance for semiconductor technologies. The traditional means of control is to dope the lattice chemically, electrically or optically with charge carriers. Here, we demonstrate for the first time a widely tunable band gap (renormalisation up to 650 meV at room-temperature) in two-dimensional (2D) semiconductors by coherently doping the lattice with plasmonic hot electrons. In particular, we integrate tungsten-disulfide (WS$_2$) monolayers into a self-assembled plasmonic crystal, which enables coherent coupling between semiconductor excitons and plasmon resonances. Accompanying this process, the plasmon-induced hot electrons can repeatedly fill the WS$_2$ conduction band, leading to population inversion and a significant reconstruction in band structures and exciton relaxations. Our findings provide an innovative and effective measure to engineer optical responses of 2D semiconductors, allowing a great flexiblity in design and optimisation of photonic and optoelectronic devices.
We present an ultrafast graphene-based detector, working in the THz range at room temperature. A logarithmic-periodic antenna is coupled to a graphene flake that is produced by exfoliation on SiO2. The detector was characterized with the free-electro n laser FELBE for wavelengths from 8 um to 220 um. The detector rise time is 50 ps in the wavelength range from 30 um to 220 um. Autocorrelation measurements exploiting the nonlinear photocurrent response at high intensities reveal an intrinsic response time below 10 ps. This detector has a high potential for characterizing temporal overlaps, e. g. in two-color pump-probe experiments.
262 - V. Reboud , A. Gassenq , N. Pauc 2017
Recent demonstrations of optically pumped lasers based on GeSn alloys put forward the prospect of efficient laser sources monolithically integrated on a Si photonic platform. For instance, GeSn layers with 12.5% of Sn were reported to lase at 2.5 um wavelength up to 130 K. In this work, we report a longer emitted wavelength and a significant improvement in lasing temperature. The improvements resulted from the use of higher Sn content GeSn layers of optimized crystalline quality, grown on graded Sn content buffers using Reduced Pressure CVD. The fabricated GeSn micro-disks with 13% and 16% of Sn showed lasing operation at 2.6 um and 3.1 um wavelengths, respectively. For the longest wavelength (i.e 3.1 um), lasing was demonstrated up to 180 K, with a threshold of 377 kW/cm2 at 25 K.
We report the observation of a giant positive magnetoresistance in millimetre scale hydrogenated graphene with magnetic field oriented in the plane of the graphene sheet. A positive magnetoresistance in excess of 200% at a temperature of 300 mK was o bserved in this configuration, reverting to negative magnetoresistance with the magnetic field oriented normal to the graphene plane. We attribute the observed positive, in-plane, magnetoresistance to Pauli-blockade of hopping conduction induced by spin polarization. Our work shows that spin polarization in concert with electron-electron interaction can play a dominant role in magnetotransport within an atomic monolayer.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا