ترغب بنشر مسار تعليمي؟ اضغط هنا

Ultrafast graphene-based broadband THz detector

124   0   0.0 ( 0 )
 نشر من قبل Martin Mittendorff
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present an ultrafast graphene-based detector, working in the THz range at room temperature. A logarithmic-periodic antenna is coupled to a graphene flake that is produced by exfoliation on SiO2. The detector was characterized with the free-electron laser FELBE for wavelengths from 8 um to 220 um. The detector rise time is 50 ps in the wavelength range from 30 um to 220 um. Autocorrelation measurements exploiting the nonlinear photocurrent response at high intensities reveal an intrinsic response time below 10 ps. This detector has a high potential for characterizing temporal overlaps, e. g. in two-color pump-probe experiments.



قيم البحث

اقرأ أيضاً

Graphene, a unique two-dimensional material of carbon in a honeycomb lattice, has brought remarkable breakthroughs across the domains of electronics, mechanics, and thermal transport, driven by the quasiparticle Dirac fermions obeying a linear disper sion. Here we demonstrate a counter-pumped all-optical difference frequency process to coherently generate and control THz plasmons in atomic layer graphene with an octave tunability and high efficiency. We leverage the inherent surface asymmetry of graphene for a strong second-order nonlinear polarizability chi(2), which together with tight plasmon field confinement, enables a robust difference frequency signal at THz frequencies. The counter-pumped resonant process on graphene uniquely achieves both energy and momentum conservation. Consequently we demonstrate a dual-layer graphene heterostructure that achieves the charge- and gate-tunability of the THz plasmons over an octave, from 9.4 THz to 4.7 THz, bounded only by the pump amplifier optical bandwidth. Theoretical modeling supports our single-volt-level gate tuning and optical-bandwidth-bounded 4.7 THz phase-matching measurements, through the random phase approximation with phonon coupling, saturable absorption, and below the Landau damping, to predict and understand the graphene carrier plasmon physics.
Graphene is an ideal material for integrated nonlinear optics thanks to its strong light-matter interaction and large nonlinear optical susceptibility. Graphene has been used in optical modulators, saturable absorbers, nonlinear frequency converters, and broadband light emitters. For the latter application, a key requirement is the ability to control and engineer the emission wavelength and bandwidth, as well as the electronic temperature of graphene. Here, we demonstrate that the emission wavelength of graphene$$ s broadband hot carrier photoluminescence can be tuned by integration on photonic cavities, while thermal management can be achieved by out-of-plane heat transfer to hexagonal boron nitride. Our results pave the way to graphene-based ultrafast broadband light emitters with tunable emission.
159 - Mengji Chen , Yang Wu , Yang Liu 2018
An ultra-broadband THz emitter covering a wide range of frequencies from 0.1 to 10 THz is highly desired for spectroscopy applications. So far, spintronic THz emitters have been proven as one class of efficient THz sources with a broadband spectrum w hile the performance in the lower frequency range (0.1 to 0.5 THz) limits its applications. In this work, we demonstrate a novel concept of a current-enhanced broad spectrum from spintronic THz emitters combined with semiconductor materials. We observe a 2-3 order enhancement of the THz signals in a lower THz frequency range (0.1 to 0.5 THz), in addition to a comparable performance at higher frequencies from this hybrid emitter. With a bias current, there is a photoconduction contribution from semiconductor materials, which can be constructively interfered with the THz signals generated from the magnetic heterostructures driven by the inverse spin Hall effect. Our findings push forward the utilization of metallic heterostructures-based THz emitters on the ultra-broadband THz emission spectroscopy.
Broadband ultrafast optical spectroscopy methods, such as transient absorption spectroscopy and 2D spectroscopy, are widely used to study molecular dynamics. However, these techniques are typically restricted to optically thick samples, such as solid s and liquid solutions. In this article we discuss a cavity-enhanced ultrafast transient absorption spectrometer covering almost the entire visible range with a detection limit of $Delta$OD $ < 1 times 10^{-9}$, extending broadband all-optical ultrafast spectroscopy techniques to dilute beams of gas-phase molecules and clusters. We describe the technical innovations behind the spectrometer and present transient absorption data on two archetypical molecular systems for excited-state intramolecular proton transfer, 1-hydroxy-2-acetonapthone and salicylideneaniline, under jet-cooled and Ar cluster conditions.
Pauli blockade occurs when the excited electrons fill up the states near the conduction bands and block subsequent absorption in semiconductors, and has been widely applied in mode-locking for passively-pulsed-laser systems. In this letter, we report the first direct observation that the Pauli blockade is broken by ultrafast cooling of hot electrons in optically-pumped graphene. With femtosecond spectroscopy, we demonstrate that the time scale to excite an electron (~100 fs) is of the same order as that of the electron decay via electron-electron scattering, which allows the electron excitation interplays strongly with the cooling of hot electrons. Consequently, Pauli blockade is dismissed, leading to an unconventionally enhanced optical absorption. We suggest that this effect is a universal feature of two-dimensional layered materials, which sheds the light of ultrafast carrier dynamics in nonlinear physics and inspires the designing of new-generation of ultrafast optoelectronic devices.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا