ﻻ يوجد ملخص باللغة العربية
Optical nonlinearities in solids reveal information about both the in-plane rotational and out-of-plane inversion symmetries of a crystal. In the van der Waals material hexagonal boron nitride (hBN) both these symmetries and the linear vibrational properties have led to the rich physics of mid-infrared phonon-polaritons. However, the role of strong electron-phonon nonlinearities requires further study. In this work, we investigate both theoretically and experimentally the rich interplay of phonon anharmonicity and symmetry in phonon-polariton mediated nonlinear optics. We show that large enhancements (>30x) of third-harmonic generation occur for incident femtosecond pulses that are resonant with the hBN transverse optical phonons. In addition, we predict and observe large transient sub-picosecond duration second-harmonic signals during resonant excitation, which in equilibrium is forbidden by symmetry. This surprising result indicates that instantaneous crystal inversion symmetry breaking can be optically induced and controlled via phonon interactions by both the power and polarization of the pump laser.
Pauli blockade occurs when the excited electrons fill up the states near the conduction bands and block subsequent absorption in semiconductors, and has been widely applied in mode-locking for passively-pulsed-laser systems. In this letter, we report
Nonlinear phononics relies on the resonant optical excitation of infrared-active lattice vibrations to coherently induce targeted structural deformations in solids. This form of dynamical crystal-structure design has been applied to control the funct
We study the possibility of switching the types of symmetry breaking bifurcation (SBB) in the cylinder shell waveguide with helical double-well potential along propagation direction. This model is described by the one-dimensional nonlinear Schr{o}din
We study the effect of an applied magnetic field on the nonequilibrium transport properties of a general cubic quantum network described by a tight-binding Hamiltonian with specially designed couplings to the leads that preserve open-system symmetrie
We experimentally demonstrate PT-symmetric optical lattices with periodical gain and loss profiles in a coherently-prepared four-level N-type atomic system. By appropriately tuning the pertinent atomic parameters, the onset of PT-symmetry breaking is