ترغب بنشر مسار تعليمي؟ اضغط هنا

Bandgap Control in Two-Dimensional Semiconductors via Coherent Doping of Plasmonic Hot Electrons

118   0   0.0 ( 0 )
 نشر من قبل Boyang Ding
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Bandgap control is of central importance for semiconductor technologies. The traditional means of control is to dope the lattice chemically, electrically or optically with charge carriers. Here, we demonstrate for the first time a widely tunable bandgap (renormalisation up to 650 meV at room-temperature) in two-dimensional (2D) semiconductors by coherently doping the lattice with plasmonic hot electrons. In particular, we integrate tungsten-disulfide (WS$_2$) monolayers into a self-assembled plasmonic crystal, which enables coherent coupling between semiconductor excitons and plasmon resonances. Accompanying this process, the plasmon-induced hot electrons can repeatedly fill the WS$_2$ conduction band, leading to population inversion and a significant reconstruction in band structures and exciton relaxations. Our findings provide an innovative and effective measure to engineer optical responses of 2D semiconductors, allowing a great flexiblity in design and optimisation of photonic and optoelectronic devices.



قيم البحث

اقرأ أيضاً

430 - Y. Murai , S. Zhang , T. Hotta 2021
We have developed a simple and straightforward way to realize controlled post-doping towards 2D transition metal dichalcogenides (TMDs). The key idea is to use low-kinetic energy dopant beams and a high-flux chalcogen beam at the same time, leading t o substitutional doping with controlled dopant densities. Atomic-resolution transmission electron microscopy has revealed that dopant atoms injected toward TMDs are incorporated substitutionally into the hexagonal framework of TMDs. Electronic properties of doped TMDs (Nb-doped WSe2) have shown drastic change, p-type action with more than two orders of magnitude increase in on current. Position-selective doping has also been demonstrated by the post-doping toward TMDs with a patterned mask on the surface. The post-doping method developed in this work can be a versatile tool for 2D-based next-generation electronics in the future.
The ability to harness light-matter interactions at the few-photon level plays a pivotal role in quantum technologies. Single photons - the most elementary states of light - can be generated on-demand in atomic and solid state emitters. Two-photon st ates are also key quantum assets, but achieving them in individual emitters is challenging because their generation rate is much slower than competing one-photon processes. We demonstrate that atomically thin plasmonic nanostructures can harness two-photon spontaneous emission, resulting in giant far-field two-photon production, a wealth of resonant modes enabling tailored photonic and plasmonic entangled states, and plasmon-assisted single-photon creation orders of magnitude more efficient than standard one-photon emission. We unravel the two-photon spontaneous emission channels and show that their spectral line-shapes emerge from an intricate interplay between Fano and Lorentzian resonances. Enhanced two-photon spontaneous emission in two-dimensional nanostructures paves the way to an alternative efficient source of light-matter entanglement for on-chip quantum information processing and free-space quantum communications.
When an atom strongly couples to a cavity, it can undergo coherent vacuum Rabi oscillations. Controlling these oscillatory dynamics quickly relative to the vacuum Rabi frequency enables remarkable capabilities such as Fock state generation and determ inistic synthesis of quantum states of light, as demonstrated using microwave frequency devices. At optical frequencies, however, dynamical control of single-atom vacuum Rabi oscillations remains challenging. Here, we demonstrate coherent transfer of optical frequency excitation between a single quantum dot and a cavity by controlling vacuum Rabi oscillations. We utilize a photonic molecule to simultaneously attain strong coupling and a cavity-enhanced AC Stark shift. The Stark shift modulates the detuning between the two systems on picosecond timescales, faster than the vacuum Rabi frequency. We demonstrate the ability to add and remove excitation from the cavity, and perform coherent control of light-matter states. These results enable ultra-fast control of atom-cavity interactions in a nanophotonic device platform.
Pauli blockade occurs when the excited electrons fill up the states near the conduction bands and block subsequent absorption in semiconductors, and has been widely applied in mode-locking for passively-pulsed-laser systems. In this letter, we report the first direct observation that the Pauli blockade is broken by ultrafast cooling of hot electrons in optically-pumped graphene. With femtosecond spectroscopy, we demonstrate that the time scale to excite an electron (~100 fs) is of the same order as that of the electron decay via electron-electron scattering, which allows the electron excitation interplays strongly with the cooling of hot electrons. Consequently, Pauli blockade is dismissed, leading to an unconventionally enhanced optical absorption. We suggest that this effect is a universal feature of two-dimensional layered materials, which sheds the light of ultrafast carrier dynamics in nonlinear physics and inspires the designing of new-generation of ultrafast optoelectronic devices.
The field of 2D materials-based nanophotonics has been growing at a rapid pace, triggered by the ability to design nanophotonic systems with in situ control, unprecedented degrees of freedom, and to build material heterostructures from bottom up with atomic precision. A wide palette of polaritonic classes have been identified, comprising ultra confined optical fields, even approaching characteristic length scales of a single atom. These advances have been a real boost for the emerging field of quantum nanophotonics, where the quantum mechanical nature of the electrons and-or polaritons and their interactions become relevant. Examples include, quantum nonlocal effects, ultrastrong light matter interactions, Cherenkov radiation, access to forbidden transitions, hydrodynamic effects, single plasmon nonlinearities, polaritonic quantization, topological effects etc. In addition to these intrinsic quantum nanophotonic phenomena, the 2D material system can also be used as a sensitive probe for the quantum properties of the material that carries the nanophotonics modes, or quantum materials in its vicinity. Here, polaritons act as a probe for otherwise invisible excitations, e.g. in superconductors, or as a new tool to monitor the existence of Berry curvature in topological materials and superlattice effects in twisted 2D materials.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا