ﻻ يوجد ملخص باللغة العربية
Bandgap control is of central importance for semiconductor technologies. The traditional means of control is to dope the lattice chemically, electrically or optically with charge carriers. Here, we demonstrate for the first time a widely tunable bandgap (renormalisation up to 650 meV at room-temperature) in two-dimensional (2D) semiconductors by coherently doping the lattice with plasmonic hot electrons. In particular, we integrate tungsten-disulfide (WS$_2$) monolayers into a self-assembled plasmonic crystal, which enables coherent coupling between semiconductor excitons and plasmon resonances. Accompanying this process, the plasmon-induced hot electrons can repeatedly fill the WS$_2$ conduction band, leading to population inversion and a significant reconstruction in band structures and exciton relaxations. Our findings provide an innovative and effective measure to engineer optical responses of 2D semiconductors, allowing a great flexiblity in design and optimisation of photonic and optoelectronic devices.
We have developed a simple and straightforward way to realize controlled post-doping towards 2D transition metal dichalcogenides (TMDs). The key idea is to use low-kinetic energy dopant beams and a high-flux chalcogen beam at the same time, leading t
The ability to harness light-matter interactions at the few-photon level plays a pivotal role in quantum technologies. Single photons - the most elementary states of light - can be generated on-demand in atomic and solid state emitters. Two-photon st
When an atom strongly couples to a cavity, it can undergo coherent vacuum Rabi oscillations. Controlling these oscillatory dynamics quickly relative to the vacuum Rabi frequency enables remarkable capabilities such as Fock state generation and determ
Pauli blockade occurs when the excited electrons fill up the states near the conduction bands and block subsequent absorption in semiconductors, and has been widely applied in mode-locking for passively-pulsed-laser systems. In this letter, we report
The field of 2D materials-based nanophotonics has been growing at a rapid pace, triggered by the ability to design nanophotonic systems with in situ control, unprecedented degrees of freedom, and to build material heterostructures from bottom up with