ترغب بنشر مسار تعليمي؟ اضغط هنا

Multi-carrier transport in ZrTe5 film

100   0   0.0 ( 0 )
 نشر من قبل Fangdong Tang
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The single layer of Zirconium pentatelluride (ZrTe5) has been predicted to be a large-gap two-dimensional (2D) topological insulator, which has attracted particular attention in the topological phase transitions and potential device application. Here we investigated the transport properties in ZrTe5 films with the dependence of thickness from a few nm to several hundred nm. We find that the temperature of the resistivity anomalys peak (Tp) is inclining to increase as the thickness decreases, and around a critical thickness of ~40 nm, the dominating carriers in the films change from n-type to p-type. With comprehensive studying of the Shubnikov-de Hass (SdH) oscillations and Hall resistance at variable temperatures, we demonstrate the multi-carrier transport instinct in the thin films. We extract the carrier densities and mobilities of two majority carriers using the simplified two-carrier model. The electron carriers can be attributed to the Dirac band with a non-trivial Berrys phase {pi}, while the hole carriers may originate from the surface chemical reaction or unintentional doping during the microfabrication process. It is necessary to encapsulate ZrTe5 film in the inert or vacuum environment to make a substantial improvement in the device quality.



قيم البحث

اقرأ أيضاً

Variable-field Hall measurements were performed on epitaxial graphene grown on Si-face and C-face SiC. The carrier transport involves essentially a single-type of carrier in few-layer graphene, regardless of SiC face. However, in multi-layer graphene (MLG) grown on C-face SiC, the Hall measurements indicated the existence of several groups of carriers with distinct mobilities. Electrical transport in MLG can be properly described by invoking three independent conduction channels in parallel. Two of these are n- and p-type, while the third involves nearly intrinsic graphene. The carriers in this lightly doped channel have significantly higher mobilities than the other two.
We present a theory for carrier transport in semiconducting nanoscale heterostructures that emphasizes the effects of strain at the interface between two different crystal structures. An exactly solvable model shows that the interface region, or junc tion, acts as a scattering potential that facilitates charge separation but also supports bound interfacial states. As a case study, we model a Type-II CdS/ZnSe heterostructure. After advancing a theory similar to that employed in model molecular conductance calculations, we calculate the electron and hole photocurrents and conductances, including non-linear effects, through the junction at steady-state.
We present a comparative study of high carrier density transport in mono-, bi-, and trilayer graphene using electric-double-layer transistors to continuously tune the carrier density up to values exceeding 10^{14} cm^{-2}. Whereas in monolayer the co nductivity saturates, in bi- and trilayer flling of the higher energy bands is observed to cause a non-monotonic behavior of the conductivity, and a large increase in the quantum capacitance. These systematic trends not only show how the intrinsic high-density transport properties of graphene can be accessed by field-effect, but also demonstrate the robustness of ion-gated graphene, which is crucial for possible future applications.
ZrTe$_5$ has been of recent interest as a potential Dirac/Weyl semimetal material. Here, we report the results of experiments performed via in-situ 3D double-axis rotation to extract the full $4pi$ solid angular dependence of the transport properties . A clear anomalous Hall effect (AHE) was detected for every sample, with no magnetic ordering observed in the system to the experimental sensitivity of torque magnetometry. Interestingly, the AHE takes large values when the magnetic field is rotated in-plane, with the values vanishing above $sim 60$ K where the negative longitudinal magnetoresistance (LMR) also disappears. This suggests a close relation in their origins, which we attribute to Berry curvature generated by the Weyl nodes.
We report a multiband transport study of bilayer graphene at high carrier densities. Employing a poly(ethylene)oxide-CsClO$_4$ solid polymer electrolyte gate we demonstrate the filling of the high energy subbands in bilayer graphene samples at carrie r densities $|n|geq2.4times 10^{13}$ cm$^{-2}$. We observe a sudden increase of resistance and the onset of a second family of Shubnikov de Haas (SdH) oscillations as these high energy subbands are populated. From simultaneous Hall and magnetoresistance measurements together with SdH oscillations in the multiband conduction regime, we deduce the carrier densities and mobilities for the higher energy bands separately and find the mobilities to be at least a factor of two higher than those in the low energy bands.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا