ﻻ يوجد ملخص باللغة العربية
ZrTe$_5$ has been of recent interest as a potential Dirac/Weyl semimetal material. Here, we report the results of experiments performed via in-situ 3D double-axis rotation to extract the full $4pi$ solid angular dependence of the transport properties. A clear anomalous Hall effect (AHE) was detected for every sample, with no magnetic ordering observed in the system to the experimental sensitivity of torque magnetometry. Interestingly, the AHE takes large values when the magnetic field is rotated in-plane, with the values vanishing above $sim 60$ K where the negative longitudinal magnetoresistance (LMR) also disappears. This suggests a close relation in their origins, which we attribute to Berry curvature generated by the Weyl nodes.
The Hall effect arises when time reversal symmetry is broken by either intrinsic magnetism or an external magnetic field. The latter contribution dominates in non-magnetic materials, in which the angular dependence of the Hall effect is typically a s
We predict an anomalous thermal Hall effect (ATHE) mediated by photons in networks of Weyl semi-metals. Contrary to the photon thermal Hall effect in magneto-optical systems which requires the application of an external magnetic field the ATHE in a W
The observation of the anomalous quantum Hall effect in exfoliated graphene flakes triggered an explosion of interest in graphene. It was however not observed in high quality epitaxial graphene multilayers grown on silicon carbide substrates. The qua
Many striking non-equilibrium phenomena have been discovered or predicted in optically-driven quantum solids, ranging from light-induced superconductivity to Floquet-engineered topological phases. These effects are expected to lead to dramatic change
Researches on anomalous Hall effect (AHE) have been lasting for a century to make clear the underlying physical mechanism. Generally, the AHE appears in magnetic materials, in which extrinsic process related to scattering effects and intrinsic contri