ترغب بنشر مسار تعليمي؟ اضغط هنا

Sequential Test for the Lowest Mean: From Thompson to Murphy Sampling

159   0   0.0 ( 0 )
 نشر من قبل Emilie Kaufmann
 تاريخ النشر 2018
والبحث باللغة English
 تأليف Emilie Kaufmann




اسأل ChatGPT حول البحث

Learning the minimum/maximum mean among a finite set of distributions is a fundamental sub-task in planning, game tree search and reinforcement learning. We formalize this learning task as the problem of sequentially testing how the minimum mean among a finite set of distributions compares to a given threshold. We develop refined non-asymptotic lower bounds, which show that optimality mandates very different sampling behavior for a low vs high true minimum. We show that Thompson Sampling and the intuitive Lower Confidence Bounds policy each nail only one of these cases. We develop a novel approach that we call Murphy Sampling. Even though it entertains exclusively low true minima, we prove that MS is optimal for both possibilities. We then design advanced self-normalized deviation inequalities, fueling more aggressive stopping rules. We complement our theoretical guarantees by experiments showing that MS works best in practice.

قيم البحث

اقرأ أيضاً

In this paper we apply active learning algorithms for dynamic pricing in a prominent e-commerce website. Dynamic pricing involves changing the price of items on a regular basis, and uses the feedback from the pricing decisions to update prices of the items. Most popular approaches to dynamic pricing use a passive learning approach, where the algorithm uses historical data to learn various parameters of the pricing problem, and uses the updated parameters to generate a new set of prices. We show that one can use active learning algorithms such as Thompson sampling to more efficiently learn the underlying parameters in a pricing problem. We apply our algorithms to a real e-commerce system and show that the algorithms indeed improve revenue compared to pricing algorithms that use passive learning.
Thompson Sampling has generated significant interest due to its better empirical performance than upper confidence bound based algorithms. In this paper, we study Thompson Sampling based algorithm for Unsupervised Sequential Selection (USS) problem. The USS problem is a variant of the stochastic multi-armed bandits problem, where the loss of an arm can not be inferred from the observed feedback. In the USS setup, arms are associated with fixed costs and are ordered, forming a cascade. In each round, the learner selects an arm and observes the feedback from arms up to the selected arm. The learners goal is to find the arm that minimizes the expected total loss. The total loss is the sum of the cost incurred for selecting the arm and the stochastic loss associated with the selected arm. The problem is challenging because, without knowing the mean loss, one cannot compute the total loss for the selected arm. Clearly, learning is feasible only if the optimal arm can be inferred from the problem structure. As shown in the prior work, learning is possible when the problem instance satisfies the so-called `Weak Dominance (WD) property. Under WD, we show that our Thompson Sampling based algorithm for the USS problem achieves near optimal regret and has better numerical performance than existing algorithms.
In this note, we introduce a randomized version of the well-known elliptical potential lemma that is widely used in the analysis of algorithms in sequential learning and decision-making problems such as stochastic linear bandits. Our randomized ellip tical potential lemma relaxes the Gaussian assumption on the observation noise and on the prior distribution of the problem parameters. We then use this generalization to prove an improved Bayesian regret bound for Thompson sampling for the linear stochastic bandits with changing action sets where prior and noise distributions are general. This bound is minimax optimal up to constants.
We study the logistic bandit, in which rewards are binary with success probability $exp(beta a^top theta) / (1 + exp(beta a^top theta))$ and actions $a$ and coefficients $theta$ are within the $d$-dimensional unit ball. While prior regret bounds for algorithms that address the logistic bandit exhibit exponential dependence on the slope parameter $beta$, we establish a regret bound for Thompson sampling that is independent of $beta$. Specifically, we establish that, when the set of feasible actions is identical to the set of possible coefficient vectors, the Bayesian regret of Thompson sampling is $tilde{O}(dsqrt{T})$. We also establish a $tilde{O}(sqrt{deta T}/lambda)$ bound that applies more broadly, where $lambda$ is the worst-case optimal log-odds and $eta$ is the fragility dimension, a new statistic we define to capture the degree to which an optimal action for one model fails to satisfice for others. We demonstrate that the fragility dimension plays an essential role by showing that, for any $epsilon > 0$, no algorithm can achieve $mathrm{poly}(d, 1/lambda)cdot T^{1-epsilon}$ regret.
We investigate finite stochastic partial monitoring, which is a general model for sequential learning with limited feedback. While Thompson sampling is one of the most promising algorithms on a variety of online decision-making problems, its properti es for stochastic partial monitoring have not been theoretically investigated, and the existing algorithm relies on a heuristic approximation of the posterior distribution. To mitigate these problems, we present a novel Thompson-sampling-based algorithm, which enables us to exactly sample the target parameter from the posterior distribution. Besides, we prove that the new algorithm achieves the logarithmic problem-dependent expected pseudo-regret $mathrm{O}(log T)$ for a linearized variant of the problem with local observability. This result is the first regret bound of Thompson sampling for partial monitoring, which also becomes the first logarithmic regret bound of Thompson sampling for linear bandits.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا