ترغب بنشر مسار تعليمي؟ اضغط هنا

Thompson Sampling for Dynamic Pricing

84   0   0.0 ( 0 )
 نشر من قبل Ravi Ganti
 تاريخ النشر 2018
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper we apply active learning algorithms for dynamic pricing in a prominent e-commerce website. Dynamic pricing involves changing the price of items on a regular basis, and uses the feedback from the pricing decisions to update prices of the items. Most popular approaches to dynamic pricing use a passive learning approach, where the algorithm uses historical data to learn various parameters of the pricing problem, and uses the updated parameters to generate a new set of prices. We show that one can use active learning algorithms such as Thompson sampling to more efficiently learn the underlying parameters in a pricing problem. We apply our algorithms to a real e-commerce system and show that the algorithms indeed improve revenue compared to pricing algorithms that use passive learning.



قيم البحث

اقرأ أيضاً

We investigate finite stochastic partial monitoring, which is a general model for sequential learning with limited feedback. While Thompson sampling is one of the most promising algorithms on a variety of online decision-making problems, its properti es for stochastic partial monitoring have not been theoretically investigated, and the existing algorithm relies on a heuristic approximation of the posterior distribution. To mitigate these problems, we present a novel Thompson-sampling-based algorithm, which enables us to exactly sample the target parameter from the posterior distribution. Besides, we prove that the new algorithm achieves the logarithmic problem-dependent expected pseudo-regret $mathrm{O}(log T)$ for a linearized variant of the problem with local observability. This result is the first regret bound of Thompson sampling for partial monitoring, which also becomes the first logarithmic regret bound of Thompson sampling for linear bandits.
158 - Emilie Kaufmann 2018
Learning the minimum/maximum mean among a finite set of distributions is a fundamental sub-task in planning, game tree search and reinforcement learning. We formalize this learning task as the problem of sequentially testing how the minimum mean amon g a finite set of distributions compares to a given threshold. We develop refined non-asymptotic lower bounds, which show that optimality mandates very different sampling behavior for a low vs high true minimum. We show that Thompson Sampling and the intuitive Lower Confidence Bounds policy each nail only one of these cases. We develop a novel approach that we call Murphy Sampling. Even though it entertains exclusively low true minima, we prove that MS is optimal for both possibilities. We then design advanced self-normalized deviation inequalities, fueling more aggressive stopping rules. We complement our theoretical guarantees by experiments showing that MS works best in practice.
Contextual dynamic pricing aims to set personalized prices based on sequential interactions with customers. At each time period, a customer who is interested in purchasing a product comes to the platform. The customers valuation for the product is a linear function of contexts, including product and customer features, plus some random market noise. The seller does not observe the customers true valuation, but instead needs to learn the valuation by leveraging contextual information and historical binary purchase feedbacks. Existing models typically assume full or partial knowledge of the random noise distribution. In this paper, we consider contextual dynamic pricing with unknown random noise in the valuation model. Our distribution-free pricing policy learns both the contextual function and the market noise simultaneously. A key ingredient of our method is a novel perturbed linear bandit framework, where a modified linear upper confidence bound algorithm is proposed to balance the exploration of market noise and the exploitation of the current knowledge for better pricing. We establish the regret upper bound and a matching lower bound of our policy in the perturbed linear bandit framework and prove a sub-linear regret bound in the considered pricing problem. Finally, we demonstrate the superior performance of our policy on simulations and a real-life auto-loan dataset.
We study the logistic bandit, in which rewards are binary with success probability $exp(beta a^top theta) / (1 + exp(beta a^top theta))$ and actions $a$ and coefficients $theta$ are within the $d$-dimensional unit ball. While prior regret bounds for algorithms that address the logistic bandit exhibit exponential dependence on the slope parameter $beta$, we establish a regret bound for Thompson sampling that is independent of $beta$. Specifically, we establish that, when the set of feasible actions is identical to the set of possible coefficient vectors, the Bayesian regret of Thompson sampling is $tilde{O}(dsqrt{T})$. We also establish a $tilde{O}(sqrt{deta T}/lambda)$ bound that applies more broadly, where $lambda$ is the worst-case optimal log-odds and $eta$ is the fragility dimension, a new statistic we define to capture the degree to which an optimal action for one model fails to satisfice for others. We demonstrate that the fragility dimension plays an essential role by showing that, for any $epsilon > 0$, no algorithm can achieve $mathrm{poly}(d, 1/lambda)cdot T^{1-epsilon}$ regret.
Stochastic Rank-One Bandits (Katarya et al, (2017a,b)) are a simple framework for regret minimization problems over rank-one matrices of arms. The initially proposed algorithms are proved to have logarithmic regret, but do not match the existing lowe r bound for this problem. We close this gap by first proving that rank-one bandits are a particular instance of unimodal bandits, and then providing a new analysis of Unimodal Thompson Sampling (UTS), initially proposed by Paladino et al (2017). We prove an asymptotically optimal regret bound on the frequentist regret of UTS and we support our claims with simulations showing the significant improvement of our method compared to the state-of-the-art.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا